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Abstract—Most existing point cloud completion methods suffer from the discrete nature of point clouds and the unstructured prediction

of points in local regions, which makes it difficult to reveal fine local geometric details. To resolve this issue, we propose SnowflakeNet

with snowflake point deconvolution (SPD) to generate complete point clouds. SPD models the generation of point clouds as the

snowflake-like growth of points, where child points are generated progressively by splitting their parent points after each SPD.

Our insight into the detailed geometry is to introduce a skip-transformer in the SPD to learn the point splitting patterns that can best fit

the local regions. The skip-transformer leverages attention mechanism to summarize the splitting patterns used in the previous SPD

layer to produce the splitting in the current layer. The locally compact and structured point clouds generated by SPD precisely reveal the

structural characteristics of the 3D shape in local patches, which enables us to predict highly detailed geometries. Moreover, since

SPD is a general operation that is not limited to completion, we explore its applications in other generative tasks, including point cloud

auto-encoding, generation, single image reconstruction, and upsampling. Our experimental results outperform state-of-the-art

methods under widely used benchmarks.

Index Terms—Point clouds, 3D shape completion, generation, reconstruction, upsampling, transformer

Ç

1 INTRODUCTION

IN 3D computer vision [1], [2], [3], [4] applications, raw
point clouds captured by 3D scanners and depth cameras

are usually sparse and incomplete [5], [6], [7] due to occlu-
sion and limited sensor resolution. Therefore, point cloud
completion [5], [8], which aims to predict a complete shape
from its partial observation, is vital for various downstream
tasks. Benefiting from large-scale point cloud datasets, deep
learning-based point cloud completion methods have

attracted more research interest. Current methods either
constrain the generation of point clouds using a hierarchical
rooted tree structure [8], [9], [10] or assume a specific topol-
ogy [5], [11] for the target shape. However, most of these
methods suffer from the discrete nature of point clouds and
the unstructured prediction of points in local regions, which
makes it difficult to preserve a well-arranged structure for
points in local patches. Therefore, it is still challenging to
reveal the local geometric details and structure characteris-
tics, such as smooth regions, sharp edges, and corners,
while completing partial 3D shapes, as illustrated in Fig. 1.

To address this problem, we propose a novel network
called SnowflakeNet that focuses primarily on the decoding
process to complete partial point clouds. SnowflakeNet
mainly consists of layers of snowflake point deconvolution
(SPD), which models the generation of complete point
clouds like the snowflake growth of points in 3D space. We
progressively generate points by stacking one SPD layer
upon another. Each SPD layer produces child points by
splitting their parent point while inheriting the shape char-
acteristics captured by the parent point. Fig. 2 illustrates the
process of SPD and point-wise splitting.

Our insight into the detailed geometry is to introduce a
skip-transformer in SPD to learn the point splitting patterns
that can best fit the local regions. Compared with the previ-
ous methods, which often ignore the spatial relationship
among points [8], [11], [13] or merely learn through self-
attention in a single level of multi-step point cloud decod-
ing [5], [9], [14], our proposed skip-transformer integrates
the spatial relationships across different decoding levels.
Therefore, it can establish a cross-level spatial relationship
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between points in different decoding steps and refine their
locations to produce a more detailed structure. To achieve
this, the skip-transformer leverages the attention mecha-
nism to summarize the splitting patterns used in the previ-
ous SPD layer, with the aim of producing splitting in the
current SPD layer. The skip-transformer can learn the shape
context and the spatial relationship between the points in
local patches. This enables the network to precisely capture
the structural characteristics in local patches and predict a
higher quality point cloud for both smooth planes and
sharp edges in 3D space. We achieved state-of-the-art com-
pletion accuracy under widely used benchmarks. Further-
more, SPD is a general operation for point cloud generation
that is simple and effective. We take a step forward and
explore its performance in more tasks that are closely
related to point cloud generation, including point cloud
auto-encoding, novel point cloud generation, single image
reconstruction, and point cloud upsampling. The generali-
zation ability of SPD is demonstrated by quantitative and
qualitative results in our experiments.

Our main contributions can be summarized as follows.

� Wepropose a novel SnowflakeNet for point cloud com-
pletion. Compared with previous methods that do not
consider local generation patterns, SnowflakeNet can
interpret point cloud completion as an explicit and
structured local pattern generation that effectively
improves the performance of 3D shape completion.

� We propose the novel snowflake point deconvolu-
tion (SPD) for progressively increasing the number
of points. It reformulates the generation of child
points from parent points as a snowflake growing
process, where the shape characteristics embedded
in the parent point features are extracted and inher-
ited by the child points through a point-wise splitting
operation.

� We introduce a novel skip-transformer to learn the
splitting patterns in SPD. It learns the shape context
and spatial relationship between child points and
parent points. This process encourages SPD to pro-
duce locally structured and compact point arrange-
ments and captures the structural characteristics of
3D surfaces in local patches.

� In addition to point cloud completion, we further
generalize SPD to more tasks related to point cloud
generation. With a few network arrangements, SPD
can be well applied to multiple point cloud genera-
tion scenarios. Comprehensive experiments are con-
ducted to verify the effectiveness and generation
ability of SPD.

2 RELATED WORK

2.1 Point Cloud Completion

Point cloud completion methods can be roughly divided
into two categories. (1) Traditional point cloud completion
methods [15], [16], [17], [18] usually assume that the 3D
shape has a smooth surface or utilize a large-scaled com-
plete shape dataset to infer the missing regions for incom-
plete shapes. (2) Deep learning-based methods [9], [19],
[20], [21], [22], [23], [24], [25], [26], [27], [28], [29], [30], [31],
[32], [33], [34], [35], [36], [37], [38], [39], [40], [41], [42], [43],
[44], however, learn to predict a complete shape based on
the prior of the training data. Our method falls into the sec-
ond category and focuses on the decoding process of point
cloud completion. We briefly review deep learning-based
methods below.

Point Cloud Completion by Folding-Based Decoding. The
development of deep learning-based 3D point cloud process-
ing techniques [45], [46], [47], [48], [49], [50], [51], [52], [53],
[54] has boosted the research of point cloud completion. Due
to the discrete nature of point cloud data, the generation of
high-quality complete shapes is one of the major concerns in
point cloud completion research. One of the pioneering
works is FoldingNet [11], which is proposed for point cloud

Fig. 1. Visual comparison of point cloud completion results. The input and ground truth have 2048 and 16384 points, respectively. Compared with the
current completion methods such as TopNet [8], CDN [9], and NSFA [12], our SnowflakeNet can generate the complete shape (16384 points) with
fine-grained geometric details, such as smooth regions (blue boxes), sharp edges, and corners (green boxes).

Fig. 2. Illustration of snowflake point deconvolution (SPD) for completing
missing parts of a car. To show the local changes more clearly, we only
illustrate some sample points as parent points in the same patch and
demonstrate their splitting paths for child points, which are marked as
gray and red lines, respectively. (a) illustrates the SPD of point splitting
from a coarse point cloud P1 (512 points) to its splitting P2 (2048 points).
(b) illustrates the SPD of point splitting from P2 to complete and dense
point cloud P3 (16384 points), where the child points are expanding like
the growing process of snowflakes.
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generation rather than completion. It includes a two-stage
generation process and combines the assumption that the
3D object lies on a 2D-manifold [8]. Following a similar
practice, methods such as SA-Net [5] further extended this
type of generation process into multiple stages by propos-
ing hierarchical folding in the decoder. However, the prob-
lem with these folding-based methods [5], [11], [55], [56] is
that the 3-dimensional code generated by intermediate
layer of the network is an implicit representation of the
target shape, which cannot be interpreted or constrained to
help refine the shape in the local region. On the other
hand, TopNet [8] modeled the point cloud generation
process as the growth of a rooted tree, where one parent
point feature is projected into several child point features
in a feature expansion layer. Similar to FoldingNet [11],
the intermediate generation processes of TopNet and SA-
Net are also implicit, where the shape information is only
represented by the point features and cannot be con-
strained or explicitly explained.

Point Cloud Completion by Coarse-to-Fine Decoding.Recently,
the explicit coarse-to-fine completion framework [10], [57],
[58], [59], [60] has received increasing attention, due to its
explainable nature and controllable generation process. Typical
methods such as PCN [61] and NSFA [12] adopted the two-
stage generation framework, where a coarse and low-resolu-
tion point cloud is first generated by the decoder, and then a
lifting module is used to increase the density of point clouds.
Such methods can achieve better performance since they can
impose more constraints on the generation process of point
clouds, i.e., coarse one and the dense one. Followers like
CDN [9] and PF-Net [19] further extended the number of gen-
eration stages and achieved the current state-of-the-art perfor-
mance. Although intriguing performance has been achieved
by the studies along this line,most of thesemethods still cannot
preserve a locally structured point splitting pattern, as illus-
trated in Fig. 1. The biggest problem is that these methods only
focus on the expansion of the point number and the reconstruc-
tion of the global shape, while failing to preserve a well-struc-
tured generation process for points in local regions. Thismakes
it difficult for thesemethods to capture the local detailed geom-
etries and structures of 3D shapes.

Compared with the above methods, our SnowflakeNet
takes one step further to explore an explicit, explainable
and locally structured solution for generating complete
point clouds. SnowflakeNet models the progressive genera-
tion of point clouds as a hierarchical rooted tree structure
like TopNet, while keeping the process explainable and
explicit like CDN [9] and PF-Net [19]. Moreover, it excels
over the predecessors by arranging the point splitting in
local regions in a locally structured pattern, which enables
the precise capture of the detailed geometries and structures
of 3D shapes.

2.2 Point Cloud Generation

In addition to point cloud completion, improvements in 3D
point cloud representation learning have significantly stim-
ulated the progress of point cloud generation. Different gen-
erative tasks for point clouds can be categorized by the
forms of inputs, such as point cloud auto-encoding, point
cloud upsampling, single image reconstruction, and novel
point cloud generation.

The task of point cloud auto-encoding [11], [62] aims to
learn discriminative representations by encoding the input
point cloud into a bottleneck latent code and then recon-
structing the point cloud itself from the compact code.
Auto-encoding is also commonly used to evaluate the per-
formance of generative decoders [63], [64]. FoldingNet [11]
is one of the pioneering works that attempts to generate
point clouds by transforming regular 2D grids into 3D
shape surfaces. AtlasNet [62] takes a step further and uses
multiple sets of 2D grids to fit different regions of the under-
lying shape.

Point cloud upsampling [14], [65] also consumes point
clouds, but the inputs are often sparse and nonuniformly
distributed, so the target is to generate dense point clouds
with the points faithfully and uniformly located on the
underlying surface. One of the representative works in this
area is PU-GAN [55], which leverages a generative adver-
sarial network to bridge the gap between sparse point
clouds and dense outputs. More recently, PU-GCN [66] pro-
posed a novel graph convolution network to facilitate
upsampling by encoding robust local information. Dis-
PU [67] proposes a two-step network to disentangle the tar-
gets of upsampling and refinement and achieves credible
performance.

The task of single image (view) reconstruction takes a
single image as input and aims to generate the underlying
point cloud with high quality. Earlier works such as
PSGN [68] and AtlasNet [62] attempt to generate point
clouds from images through convolution and MLP-based
architectures. Recently, 3DAttriFlow [69] proposed assign-
ing disentangled semantic attributes to 3D point clouds by
combining an attribute flow pipe and a deformation pipe,
which achieves state-of-the-art performance in single image
reconstruction.

In addition to deterministic data forms such as point
clouds and images, the input can also be a randomly sam-
pled latent code from a probabilistic distribution, which
leads to novel shape generation [70], [71], [72]. To generate
point clouds with diverse shapes and good quality, many
methods have been explored from diverse perspectives.
PointFlow [64] leverages continuous normalizing flow to
achieve the transformation from the sampled point distribu-
tion to the target. ShapeGF [73] moves points to the target
position by learning gradient fields. More recently,
DPM [63] takes inspiration from non-equilibrium thermo-
dynamics and conducts point cloud generation through a
Markov chain [63].

Despite the different forms of inputs, point cloud genera-
tion aims to produce high-quality shapes with detailed
geometries. Although decent progress has been made in
individual tasks, effective generative operations that can be
conveniently applied to different tasks are necessary. There-
fore, in this paper, we extend snowflake point deconvolu-
tion (SPD) to multiple generative tasks, including point
cloud auto-encoding, novel point cloud generation, single
image reconstruction, and point cloud upsampling.

2.3 Relation to Transformer

The transformer [74] was initially proposed for encoding
sentences in natural language processing, but soon became
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popular in the research of 2D computer vision (CV) [75],
[76]. Then, the success of transformer-based 2D CV studies
drew the attention of 3D point cloud research, where pio-
neering studies such as Point Transformer [77], PCT [78],
and Pointformer [79] have introduced such framework in
the encoding process of point clouds to learn the representa-
tion. In our work, instead of only utilizing its representation
learning ability, we further extend the application of trans-
former-based structure into the decoding process of point
cloud completion, and reveal its ability to generate high-
quality 3D shapes through the proposed skip-transformer.

3 SNOWFLAKENET

The overall architecture of SnowflakeNet, which is shown in
Fig. 3a, consists of the following three modules: feature
extraction, seed generation, and point generation. We will
detail each module in the following.

3.1 Overview

Feature Extraction Module. Let P ¼ fpjg with a size of N � 3
be an input point cloud, where N is the number of points
and each point pj indicates a 3D coordinate. The feature
extractor aims to extract a shape code f with a size of 1� C,
which captures the global structure and detailed local pat-
tern of the target shape. To achieve this, we adopt three
layers of set abstraction from [81] to aggregate point fea-
tures from local to global, along which point trans-
former [77] is applied to incorporate the local shape context.

Seed Generation Module. The objective of the seed genera-
tor is to produce a coarse but complete point cloud P0 with
a size of N0 � 3 that captures the geometry and structure of
the target shape. As shown in Fig. 3b, with the extracted
shape code f, the seed generator first produces point fea-
tures that capture both the existing and missing structures
through the point-wise splitting operation. Next, the per-

point features are integrated with the shape code through a
multi-layer perceptron (MLP) to generate a coarse point
cloud Pc of size Nc � 3. Then, following the previous
method [9], Pc is merged with the input point cloud P by
concatenation, and then the merged point cloud is down-
sampled to P0 through farthest point sampling (FPS) [81].
In this paper, we typically setNc ¼ 256 andN0 ¼ 512, where
a sparse point cloud P0 suffices for representing the under-
lying shape. P0 will serve as the seed point cloud for point
generation module.

Point Generation Module. The point generation module
consists of three snowflake point deconvolution (SPD) steps,
each of which takes the point cloud from the previous step
as input and splits it by upsampling factors (denoted by
r1; r2, and r3) to obtain P1;P2, and P3, which have the point
sizes of N1 � 3; N2 � 3, and N3 � 3. The SPDs collaborate to
generate a rooted tree structure that complies with the local
pattern for every seed point. The SPD structure is detailed
below.

3.2 Snowflake Point Deconvolution (SPD)

Motivation. The SPD aims to increase the number of points
and reveal the detailed geometry in local regions. This is
achieved by multiple steps of point splitting, from which a
tree-structured local patch is generated for each seed point.
To ensure that the patch can best fit the local region, the fol-
lowing two goals must be achieved in each splitting step:
(1) capture the local geometric pattern and (2) transfer the
captured geometric information to the child features during
splitting. To aggregate accurate local geometric patterns,
self-attention is a simple and intuitive solution. In multi-
step point splitting, however, self-attention will not suffice
because it only considers the context in the current step but
ignores the historic splitting information, thus may fail to
arrange the multi-step splitting in an organized way. To

Fig. 3. (a) The overall architecture of SnowflakeNet, which consists of the following three modules: feature extraction, seed generation and point gen-
eration. (b) The details of the seed generation module. (c) Snowflake point deconvolution (SPD). Note that N, Nc, and Ni are the numbers of points,
and C and C0 are the numbers of point feature channels, which are 512 and 128, respectively.
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address this issue, we propose a skip-transformer to enable
collaboration between SPDs. While the skip-transformer
benefits from the attention mechanism and can well capture
the local context, it can also adjust the splitting pattern in
consecutive SPDs. After capturing the local geometric pat-
tern, child features can be obtained by first duplicating the
parent features and then adding variations. Existing meth-
ods [9], [12], [61] usually adopt the folding-based strat-
egy [11] to obtain the variations, which is used for learning
different displacements for the duplicated points. However,
the folding operation samples the same 2D grids for each
parent point and ignores the local shape characteristics con-
tained in the parent point. In contrast, the SPD obtains var-
iations through a point-wise splitting operation, which fully
leverages the geometric information in parent points and
adds variations that comply with local patterns.

Fig. 3c illustrates the structure of the ith SPD with
upsampling factor ri. We denote a set of parent points
obtained from the previous step as Pi�1 ¼ fpi�1

j gNi�1
j¼1 . We

split the parent points in Pi�1 by duplicating them ri times
to generate a set of child points P̂i and then spreading P̂i to
the neighborhood of the parent points. To achieve this, we
take the inspiration from [61] to predict the point displace-
ment DPi of P̂i. Then, P̂i is updated as Pi ¼ P̂i þ DPi, where
Pi is the output of the ith SPD.

In detail, taking the shape code f from feature extraction,
the SPD first extracts the per-point featureQi�1 ¼ fqi�1

j gNi�1
j¼1

for Pi�1 by adopting the basic PointNet [81] framework.
Then, Qi�1 is sent to the skip-transformer to learn the shape
context feature, denoted as Hi�1 ¼ fhi�1

j gNi�1
j¼1 . Next, Hi�1 is

upsampled by a point-wise splitting operation and duplica-
tion, respectively, where the former serves to add variations
and the latter preserves shape context information. Finally,
the upsampled feature with a size of Ni � 2 C0 is fed to
MLP to produce the displacement feature Ki ¼ fki

jgNi
j¼1 of the

current step. Here, Ki is used for generating the point dis-
placement DPi, and will be fed into the next SPD. DPi is for-
mulated as follows:

DPi ¼ tanhðMLPðKiÞÞ; (1)

where tanh is the hyper-tangent activation.
Point-Wise Splitting Operation. The point-wise splitting

operation aims to generate multiple child point features for
each hi�1

j 2 Hi�1. Fig. 4 shows this operation structure used
in the ith SPD (see Fig. 3c). It is a special one-dimensional
deconvolution strategy, where the kernel size and stride are

equal to ri. In practice, each hi�1
j 2 Hi�1 shares the same set

of kernels and produces multiple child point features in a
point-wise manner. To be clear, we denote the mth logit of
hi�1
j as hi�1

j;m , and its corresponding kernel is indicated by
Km. Technically, Km is a matrix with a size of ri � C0, the
kth row ofKm is denoted as km;k, and the kth child point fea-
ture gj;k is given by

gj;k ¼
X

m

hi�1
j;mkm;k: (2)

In addition, in Fig. 4, we assume that each learnable kernel
Km indicates a certain shape characteristic, which describes
the geometries and structures of the 3D shapes in local
regions. Correspondingly, every logit hi�1

j;m indicates the acti-
vation status of themth shape characteristic. The child point
features can be generated by adding the activated shape
characteristics. Moreover, the point-wise splitting operation
is flexible for upsampling points. For example, when ri ¼ 1,
the SPD can move the point from the previous step to a bet-
ter position; when ri > 1, it serves to expand the number of
points by a factor of ri.

Collaboration Between SPDs. In Fig. 3a, we adopt three
SPDs to generate the complete point cloud. We first set the
upsampling factor r1 ¼ 1 to explicitly rearrange the seed
point positions. Then, we set r2 > 1 and r3 > 1 to generate
a structured tree for every point in P1. Collaboration
between SPDs is crucial for coherently growing the tree,
because the information from the previous splitting step
can be used to guide the current step. In addition, the
growth of the rooted trees should also capture the pattern of
local patches to keep them from overlapping with each
other. To achieve this, we propose a novel skip-transformer
to serve as the cooperation unit between SPDs. In Fig. 5, the
skip-transformer takes per-point feature qi�1

j as input, and
combines it with displacement feature ki�1

j from the
previous step to produce the shape context feature hi�1

j ,
which is given by

hi�1
j ¼ STðki�1

j ;qi�1
j Þ; (3)

where ST denotes the skip-transformer. The detailed struc-
ture is described as follows.

3.3 Skip-Transformer

Fig. 5 shows the structure of skip-transformer. The skip-
transformer is introduced to learn and refine the spatial con-
text between the parent points and their child points, where
the term “skip” represents the connection between the

Fig. 4. The point-wise splitting operation. The cubes are logits of the par-
ent point feature that represent the activation status of the correspond-
ing shape characteristics (Kernels), and the child point features are
obtained by adding activated shape characteristics.

Fig. 5. The detailed structure of the skip-transformer.
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displacement feature from the previous layer and the point
feature of the current layer.

Given per-point feature qi�1
j and displacement feature

ki�1
j , the skip-transformer first concatenates them. Then, the

concatenated feature is fed to MLP, which generates the
vector vi�1

j . Here, vi�1
j serves as the value vector which

incorporates previous point splitting information. To fur-
ther aggregate local shape context into vi�1

j , the skip-trans-
former uses qi�1

j as the query and ki�1
j as the key to estimate

attention vector ai�1
j , where ai�1

j denotes how much atten-
tion the current splitting should pay to the previous one. To
enable the skip-transformer to concentrate on local patterns,
we calculate attention vectors between each point and its
k-nearest neighbors (k-NN). The k-NN strategy also helps to
reduce the computational cost. Specifically, given the jth
point feature qi�1

j , the attention vector ai�1
j;l between qi�1

j

and the displacement features of the k-nearest neighbors
fki�1

j;l jl ¼ 1; 2; . . . ; kg can be calculated as follows:

ai�1
j;l ¼ expðMLPððqi�1

j Þ � ðki�1
j;l ÞÞÞPk

l¼1 expðMLPððqi�1
j Þ � ðki�1

j;l ÞÞÞ
; (4)

where � is the relation operation, i.e., elementwise subtrac-
tion. Finally, the shape context feature hi�1

j can be obtained by

hi�1
j ¼ vi�1

j �
Xk

l¼1

ai�1
j;l � vi�1

j;l ; (5)

where � denotes an elementwise addition and � is Hada-
mard product. Note that there is no previous displacement
feature for the first SPD, of which the skip-transformer takes
q0
j as both the query and key.

3.4 Training Loss

3.4.1 Completion Loss

We leverage the Chamfer distance (CD) or Earth Mover’s
distance (EMD) as the primary loss function. The L2 version
of the Chamfer distance (CD) is defined as follows:

LCD2
ðX ;YÞ ¼

X

x2X
min
y2Y

kx� yk2 þ
X

y2Y
min
x2X

ky� xk2; (6)

where X and Y are point sets, x 2 X and y 2 Y are point
coordinates, respectively. The L1 version of CD replaces
L2-norm in Eq. (6) with L1-norm and divide by 2, which is
given as

LCD1
ðX ;YÞ ¼ 1

2

X

x2X
min
y2Y

kx� yk þ 1

2

X

y2Y
min
x2X

ky� xk: (7)

To explicitly constrain point clouds generated in the seed
generation and the subsequent splitting process, we down-
sample the ground truth point clouds to the same sampling
density as fPc;P1;P2, and P3g (see Fig. 3). We define the
sum of the four CD losses as the completion loss, denoted as
follows:

Lcompletion ¼ LCDðPc;P0
cÞ þ

X3

i¼1

LCDðPi;P0
iÞ; (8)

where P0
i and P0

c denote the down-sampled ground truth
point clouds that have the same point number as point
cloud Pi and Pc, respectively.

Meanwhile, we also follow MSN [13] and SpareNet [32]
to take the Earth Mover’s distance (EMD) as training loss,
which is defined as follows:

LEMD ¼ min
f:X!Y

X

x2X
kx� fðxÞk2; (9)

where f is a bijection mapping: f : X ! Y. To take EMD as
completion loss, we replace the LCD in Equation (8) with
LEMD.

3.4.2 Preservation Loss

We exploit the partial matching loss from [7] to preserve the
shape structure of the incomplete point cloud, which is
defined as

LpartialðX ;YÞ ¼
X

x2X
min
y2Y

kx� yk2: (10)

The partial matching loss is a unidirectional constraint that
aims to match one shape to the other without constraining
the opposite direction. Because the partial matching loss
only requires the output point cloud to partially match the
input, we take it as the preservation loss Lpreservation, and
the total training loss is formulated as follows:

L ¼ Lcompletion þ �Lpreservation; (11)

where we typically set � ¼ 1.

4 EXPERIMENTS

To comprehensively justify the effectiveness of our Snowfla-
keNet, we first conduct comprehensive experiments under
two widely used benchmarks: PCN [61] and Comple-
tion3D [8]. Both are subsets of the ShapeNet dataset. The
experiments demonstrate the superiority of our method
over other state-of-the-art point cloud completion methods.
Moreover, we also conduct experiments on the ShapeNet-
34/21 [60] dataset to evaluate the performance of Snowfla-
keNet on novel shape completion. Then, we evaluate our
method in other point cloud generation tasks, including
point cloud auto-encoding, generation, single image recon-
struction and upsampling.

4.1 Evaluation on the PCN Dataset

4.1.1 Dataset Briefs and Evaluation Metric

The PCN dataset [61] is a subset with eight categories
derived from the ShapeNet dataset [83]. The incomplete
shapes are generated by back-projecting complete shapes
into eight different partial views. For each complete shape,
16,384 points are evenly sampled from the shape surface. To
align with the ground truth shapes, we typically set r1 ¼ 1,
r2 ¼ 4 and r3 ¼ 8 to generate complete point clouds with
16,384 points. We follow the same split settings as PCN [61]
to fairly compare our SnowflakeNet with other methods.
For evaluation, we adopt the L1 version of Chamfer distance
(CD), which follows the same practice as previous meth-
ods [61]. Although CD is widely used for evaluating the
quality of point clouds, it may be insensitive to the global
distribution. Therefore, we also use EMD as both the comple-
tion loss and the evaluation metric to verify the effectiveness
of our method.
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4.1.2 Quantitative Comparison

Table 1 shows the results of our SnowflakeNet and other
completion methods on the PCN dataset in terms of L1 CD,
from which we can find that SnowflakeNet achieves the best
performance over all counterparts. In particular, compared
with the result of the state-of-the-art PMP-Net++ [82], Snow-
flakeNet reduces the average CD by 0.35, which is 4.6%
lower than the PMP-Net++’s results (7.56 in terms of average
CD). Moreover, SnowflakeNet also achieves the best results
on most categories in terms of CD, which proves the robust
generalization ability of SnowflakeNet for completing
shapes across different categories. In Table 1, both CDN [9]
and NSFA [12] are typical point cloud completion methods
that adopt a coarse-to-fine shape decoding strategy and
model the generation of points as a hierarchical rooted tree.
Compared with these two methods, our SnowflakeNet also
adopts the same decoding strategy but achieves much better
results on the PCN dataset. Therefore, the improvements
should be credited to the proposed SPD layers and the skip-
transformer in SnowflakeNet, which helps to generate points
in local regionswith a locally structured pattern.

Table 2 shows the quantitative results on the PCN dataset
in terms of EMD, where SnowflakeNet also achieves the best
overall performance (average EMD). In particular, by com-
paring with the second-ranked PoinTr [60], SnowflakeNet is
able to reduce the average EMD by 0.232, which is 13.2%
lower than PoinTr (1.764 in terms of average EMD). Com-
pared with CD, the EMD is better at evaluating the global

distribution of the completed point clouds [84], and the
results in Tables 1 and 2 can demonstrate the effectiveness of
SnowflakeNet under different evaluationmetrics.

4.1.3 Visual Comparison

We choose the top four point cloud completion methods
from Table 1, and visually compare SnowflakeNet with
these methods in Fig. 6. The visual results show that Snow-
flakeNet can predict the complete point clouds with a much
better shape quality. For example, in the car category, the
point distribution on the car’s boundary generated by
SnowflakeNet is smoother and more uniform than those
generated by other methods. For the chair category, Snow-
flakeNet can predict a more detailed and clear structure of
the chair back compared with the other methods, where
CDN [9] almost fails to preserve the basic structure of the
chair back, while the other methods generate much noise
between the columns of the chair back.

We also present a visual comparison under the EMD eval-
uation (see Table 2) in Fig. 7. Typically, we visually compare
SnowflakeNet with two state-of-the-art methods, Spare-
Net [32] and PoinTr [60]. The completion results show that
under the guidance of EMD loss, SnowflakeNet can produce
point clouds with better visual quality that tend to maintain
a consistent point distribution across the entire shape.

4.2 Evaluation on the Completion3D Dataset

4.2.1 Dataset Briefs and Evaluation Metric

The Completion3D dataset contains 30,958 models from 8
categories, of which both the partial and ground truth point
clouds have 2,048 points, here we set r1 ¼ 1, r2 ¼ 2 and r3 ¼
2 to generate complete point clouds with 2,048 points. We
follow the same train/validate/testing split of Comple-
tion3D to have a fair comparison with the other methods,
where the training set contains 28,974 models, the validation
and testing sets contain 800 and 1,184 models, respectively.
For evaluation, we adopt the L2 version of the Chamfer dis-
tance on testing set to align with previous studies.

4.2.2 Quantitative Comparison

In Table 3, we show the quantitative results of our Snowfla-
keNet and those of the other methods on the Completion3D
dataset. All results are cited from the online public leader-
board of Completion3D.1 From Table 3, we can find that our

TABLE 1
Point Cloud Completion on the PCN Dataset in Terms of
Per-Point L1 Chamfer Distance �103 (Lower is Better)

Methods Avg Plane Cab. Car Chair Lamp Couch Table Boat

Folding [11] 14.31 9.49 15.80 12.61 15.55 16.41 15.97 13.65 14.99
TopNet [8] 12.15 7.61 13.31 10.90 13.82 14.44 14.78 11.22 11.12
AtlasNet [62] 10.85 6.37 11.94 10.10 12.06 12.37 12.99 10.33 10.61
PCN [61] 9.64 5.50 22.70 10.63 8.70 11.00 11.34 11.68 8.59
GRNet [10] 8.83 6.45 10.37 9.45 9.41 7.96 10.51 8.44 8.04
CDN [9] 8.51 4.79 9.97 8.31 9.49 8.94 10.69 7.81 8.05
PMP-Net [6] 8.73 5.65 11.24 9.64 9.51 6.95 10.83 8.72 7.25
NSFA [12] 8.06 4.76 10.18 8.63 8.53 7.03 10.53 7.35 7.48
PoinTr [60] 8.38 4.75 10.47 8.68 9.39 7.75 10.93 7.78 7.29
PMP-Net++[82] 7.56 4.39 9.96 8.53 8.09 6.06 9.82 7.17 6.52

Ours 7.21 4.29 9.16 8.08 7.89 6.07 9.23 6.55 6.40

TABLE 2
Point Cloud Completion on the PCN Dataset in Terms of EMD

�102 (Lower is Better)

Methods Avg Plane Cab. Car Chair Lamp Couch Table Boat

Folding [11] 2.526 1.682 2.576 2.183 2.847 3.062 3.003 2.500 2.357
PCN [61] 2.144 2.426 1.888 2.744 2.200 2.383 2.062 1.242 2.208
AtlasNet [62] 2.282 1.324 2.582 2.085 2.442 2.718 2.829 2.160 2.114
MSN [13] 2.142 1.334 2.251 2.062 2.346 2.449 2.712 1.977 2.001
GRNet [10] 1.987 1.376 2.128 1.918 2.127 2.150 2.468 1.852 1.876
PMP-Net [6] 1.863 1.259 2.058 2.520 1.798 1.280 2.579 1.651 1.760
SpareNet [32] 1.862 1.131 2.014 1.783 2.050 2.063 2.333 1.729 1.790
PointTr [60] 1.764 0.938 1.986 1.851 1.892 1.740 2.242 1.931 1.532

Ours 1.532 0.973 1.746 1.669 1.614 1.419 2.009 1.308 1.514

Fig. 6. Visual comparison of point cloud completion on the PCN dataset.
Our SnowflakeNet can produce smoother surfaces (e.g., car) and more
detailed structures (e.g., chair back) compared with the other state-of-
the-art point cloud completion methods.

1. https://completion3d.stanford.edu/results
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SnowflakeNet achieves the best results over all methods
listed on the leaderboard. In particular, compared with the
latest point cloud completion methods, such as VE-
PCN [25], SnowflakeNet can reduce the average CD by 0.50,
which is 6.1% lower than that of the VE-PCN (8.10 in terms
of average CD). Meanwhile, SnowflakeNet also outperforms
the other methods in multiple categories in terms of per-cat-
egory CD. Especially in the table category, SnowflakeNet
reduces the per-category CD by 1.42 compared with the sec-
ond-ranked result of VE-PCN. Compared with the PCN
dataset, the point clouds in the Completion3D dataset have
fewer points, which are easier to generate. Therefore, a
coarse-to-fine decoding strategy may have fewer advan-
tages over the other methods. Despite this, our Snowflake-
Net achieves superior performance over the folding-based
methods such as SA-Net [5], and our method is also the best
among the coarse-to-fine methods including TopNet [8] and
GRNet [10]. Overall, the results on the Completion3D data-
set demonstrate the capability of SnowflakeNet to predict
high-quality complete shapes using sparse point clouds.

4.2.3 Visual Comparison

Similar to the practice in the PCN dataset, we also visually
compare SnowflakeNet with the top four methods in

Table 3. The visual comparison in Fig. 8 demonstrates that
our SnowflakeNet also achieves much better visual results
than the other counterparts on a sparse point cloud comple-
tion task. Especially, in the plane category, SnowflakeNet
predicts the complete plane which is almost the same as the
ground truth, while the other methods fail to reveal the
complete plane in detail. The same conclusion can also be
drawn from the observation of the car category. In the table
and boat categories, SnowflakeNet produces more detailed
structures compared with the other methods, e.g., the sails
of the boat and the legs of the table.

4.3 Evaluation on the ShapeNet-34/21 Dataset

4.3.1 Dataset Briefs and Evaluation Metric

The ShapeNet-34/21 dataset [60] is derived from the origi-
nal ShapeNet [83] dataset, where 34 observed shape catego-
ries are used for training, and the other 21 unseen categories
are used for novel shape completion. The 34 categories of
observed objects contain 50,165 objects, where those of the
train/test split are 46,765 and 3,400 respectively. The unseen
21 categories contain 2,305 objects. To obtain a fair compari-
son, we follow the same practice of PoinTr [60] to sample
2,048 points from the object as input and 8,192 points as the
ground truth, and the partial point clouds are generated
online by removing the furthest n (2,048 to 6,144) points
from a randomly selected viewpoint. To produce complete
point clouds with 8,192 points, we set the upsampling fac-
tors to r1 ¼ 1; r2 ¼ 4 and r3 ¼ 4 to keep the output point
number the same as other counterparts.

Fig. 7. Visual comparison of point cloud completion on the PCN dataset.
Following the settings of MSN [13] and SpareNet [32], SnowflakeNet is
trained with EMD.

Fig. 8. Visual comparison of point cloud completion on the Completion3D
dataset. Our SnowflakeNet can produce smoother surfaces (e.g., car
and table) and more detailed structures compared with the other state-
of-the-art point cloud completion methods.

TABLE 3
Point Cloud Completion on the Completion3D in Terms of Per-Point L2 Chamfer Distance �104 (Lower is Better)

Methods Avg Plane Cab. Car Chair Lamp Couch Table Boat

FoldingNet [11] 19.07 12.83 23.01 14.88 25.69 21.79 21.31 20.71 11.51
PCN [61] 18.22 9.79 22.70 12.43 25.14 22.72 20.26 20.27 11.73
PointSetVoting [85] 18.18 6.88 21.18 15.78 22.54 18.78 28.39 19.96 11.16
AtlasNet [62] 17.77 10.36 23.40 13.40 24.16 20.24 20.82 17.52 11.62
SoftPoolNet [86] 16.15 5.81 24.53 11.35 23.63 18.54 20.34 16.89 7.14
TopNet [8] 14.25 7.32 18.77 12.88 19.82 14.60 16.29 14.89 8.82
SA-Net [5] 11.22 5.27 14.45 7.78 13.67 13.53 14.22 11.75 8.84
GRNet [10] 10.64 6.13 16.90 8.27 12.23 10.22 14.93 10.08 5.86
PMP-Net [6] 9.23 3.99 14.70 8.55 10.21 9.27 12.43 8.51 5.77
VRCNet [58] 8.12 3.94 10.93 6.44 9.32 8.32 11.35 8.60 5.78
VE-PCN [25] 8.10 3.83 12.74 7.86 8.66 7.24 11.47 7.88 4.75

Ours 7.60 3.48 11.09 6.90 8.75 8.42 10.15 6.46 5.32
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During the evaluation, L2 CD and F-Score [60], [87] are
adopted as the evaluation metrics, where CD can evaluate
the similarity between the completion results and the
ground truth, and F-Score serves to evaluate the accuracy
and completeness of the completed point clouds [28].
According to the removed point number n, the completion
performance is evaluated under the following different dif-
ficulty degrees: Simple (n ¼ 2; 048), Moderate (n ¼ 4; 096)
and Hard (n ¼ 6; 144). For each model, 8 fixed viewpoints
are set to generate input point clouds. Similar to PoinTr, we
present the completion results under different difficulty
degrees and the averaged results.

4.3.2 Quantitative Comparison

Table 4 shows the quantitative comparison between Snow-
flakeNet and the other counterparts on the ShapeNet-34/21
dataset. The results in Table 4 demonstrate that our method
outperforms all the other counterparts in terms of CD on
the three difficulty levels, which indicates that Snowflake-
Net can handle point clouds of different degrees of incom-
pleteness, including the Easy, Moderate and Hard levels.
Moreover, the results of the unseen categories also proved
the generalization ability of SnowflakeNet on novel shape
completion. Particularly, compared with PoinTr [60], Snow-
flakeNet reduces the CD-Avg of unseen categories by 5.4,
which is 26.3% lower than that of PoinTr. Meanwhile,

SnowflakeNet also achieves competitive results in terms of
F1 score, which is very close to that of PoinTr and signifi-
cantly better than those of the other methods.

4.3.3 Visual Comparison

In Fig. 9, we show the visual comparison of novel shape
completion, where the objects are from unseen categories
during training. The completion results in Fig. 9 show that
SnowflakeNet can reveal the underlying complete shapes
while maintaining a visually uniform point distribution,
which can be found in the bowl and the copy machine
instances.

4.4 Extension to Real-World Scenarios

To evaluate the generalization ability of SnowflakeNet on
real-world scenarios, we conduct experiments on the KITTI
benchmark [61], [88] and the ScanNet [89] chairs.

4.4.1 Extension to the KITTI Benchmark

We test the performance of SnowflakeNet on the KITTI
benchmark. Following the same practice of [60], we finetune
our trained model on ShapeNet cars [83] and evaluate the
performance on the KITTI benchmark. The quantitative
comparison with state-of-the-art methods is shown in
Table 5, where fidelity and minimal matching distance
(MMD) [61] are adopted as the evaluation metrics. The
visual comparison is shown in Fig. 10.

4.4.2 Extension to ScanNet Chairs

To further evaluate the performance of sparse point cloud
completion in the real-world scenario, we use the pre-
trained model of SnowflakeNet on the Completion3D data-
set and evaluate its performance on the chair instances in
the ScanNet dataset without fine-tuning. We compare
SnowflakeNet with GRNet [10], VRCNet [58], VE-PCN [25],
and PMP-Net++[82] and use their pre-trained models for

TABLE 4
Point Cloud Completion on the ShapeNet-34/21 Dataset in Terms of the L2 Chamfer Distance �104 and F-Score@1% Metric

34 seen categories 21 unseen categories

CD-S (#) CD-M (#) CD-H (#) CD-Avg (#) F1 (") CD-S (#) CD-M (#) CD-H (#) CD-Avg (#) F1 (")
Folding [11] 18.6 18.1 33.8 23.5 0.139 27.6 27.4 53.6 36.2 0.095
PCN [61] 18.7 18.1 29.7 22.2 0.154 31.7 30.8 52.9 38.5 0.101
TopNet [8] 17.7 16.1 35.4 23.1 0.171 26.2 24.3 54.4 35.0 0.121
PFNet [19] 31.6 31.9 77.1 46.8 0.347 52.9 58.7 133.3 81.6 0.322
GRNet [10] 12.6 13.9 25.7 17.4 0.251 18.5 22.5 48.7 29.9 0.216
PoinTr [60] 7.6 10.5 18.8 12.3 0.421 10.4 16.7 34.4 20.5 0.384

Ours 5.1 7.1 12.1 8.1 0.414 7.6 12.3 25.5 15.1 0.372

The CD-S, CD-M, and CD-H denote the CD results under the three difficulty levels of Simple, Moderate, and Hard.

Fig. 9. Visual comparison of objects from novel categories in the Shape-
Net-34/21 [60] dataset.

TABLE 5
Quantitative Comparison on the KITTI Benchmark in

Terms of Fidelity and MMD Metrics

PFNet [19] CRN [9] GRNet [10] PoinTr [60] Ours

Fidelity 1.137 1.023 0.816 0.000 0.034
MMD 0.792 0.872 0.568 0.526 0.407
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testing. The quantitative comparison is shown in Table 6
and the visual comparison is shown in Fig. 11.

4.5 Ablation Studies

We justify the effectiveness of each part of SnowflakeNet.
For convenience, we conduct ablation studies on the four
categories of the Completion3D dataset. By default, all the
experimental settings remain the same as in Section 4.2.

4.5.1 Effect of the Skip-Transformer

To evaluate the effectiveness of skip-transformer used in
SnowflakeNet, we develop three network variations as fol-
lows. (1) The Self-att variation replaces the transformer
mechanism in skip-transformer with the self-attention
mechanism, where the input is the point features of the cur-
rent layer. (2) The No-att variation removes the transformer
mechanism from skip-transformer, where the features from
the previous layer of SPD are directly added to the features
of the current SPD layer. (3) The No-connect variation
removes the whole skip-transformer from the SPD layers,
and thus, no feature connection is established between the
SPD layers. The experimental results are shown in Table 7.
In addition, we denote the original version of SnowflakeNet
as Full for a clear comparison with the performance of each
network variation. From Table 7, we can find that the Full
model achieves the best performance among all compared
network variations. The comparison between the No-con-
nect model and the Full model verifies the advantage of the
skip-transformer between SPD layers, and the comparison
between the No-att model and the Full model further
proves the effectiveness of transformer mechanism to learn
shape contexts in local regions. Moreover, the comparison
between the Self-att model and the No-att model shows that
the attention-based mechanism can also contribute to the
completion performance.

4.5.2 Effect of Each Part in SnowflakeNet

To evaluate the effectiveness of each part in SnowflakeNet,
we define four different network variations as follows. (1)

The Folding-expansion variation replaces the point-wise split-
ting operation with the folding-based feature expansion
method [11], where the features are duplicated several times
and concatenated with a 2-dimensional codeword, in order
to increase the number of point features. (2) The EPCN+SPD
variation employs the PCN encoder and our SnowflakeNet
decoder. (3) The w/o preservation loss variation removes the
partial matching loss. (4) The PCN-baseline is the perfor-
mance of the original PCN method [61], which is trained
and evaluated under the same settings as our ablation
study. In Table 8, we report the results of the four network
variations along with the default network denoted as Full.
By comparing EPCN+SPD with PCN-baseline, we can find
that our SPD with skip-transformer-based decoder can
potentially be applied to other simple encoders, and
achieves significant improvement. By comparing the Fold-
ing-expansion with the Full model, the better performance
of the Full model proves the advantage of point-wise split-
ting operation over the folding-based feature expansion
methods. By comparing the w/o preservation loss model
with the Full model, we find that the preservation loss can
slightly improve the average performance of SnowflakeNet,
but has different effects on different categories.

4.5.3 The Effect of the Splitting Strategy

SPD is flexible in increasing the point number. When ri ¼ 1
(ri is the upsampling factor of the ith SPD), it serves to

TABLE 6
Quantitative Comparison on ScanNet Chairs

in Terms of Fidelity and MMD

GRNet
[10]

VRCNet
[58]

VE-PCN
[25]

PMP-Net+
+[82]

Ours

Fidelity 0.36 1.53 0.10 0.82 0.12
MMD 6.62 10.44 11.32 6.22 6.29

Fig. 11. Visual comparison of the chairs in the ScanNet dataset.

TABLE 7
Effect of the Skip-Transformer

Methods avg. Couch Chair Car Lamp

Self-att 8.89 6.04 10.9 9.42 9.12
No-att 9.30 6.15 11.2 10.4 9.38
No-connect 9.39 6.17 11.3 10.5 9.51
Full 8.48 5.89 10.6 9.32 8.12

Fig. 10. Visual comparison on the KITTI benchmark.
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move the point from the previous step to a better position;
when ri > 0, it splits a point by a factor of ri. In this section,
we analyze the influence of different point splitting strate-
gies on the performance of SnowflakeNet, and the other
experimental settings are the same as those in the ablation
study. As shown in Table 9, we additionally test three dif-
ferent splitting strategies. The one-step strategy adopts a
single SPD (upsampling factor is 4) to split P0 (512 points)
to P1 (2048 points). The two-step strategy adopts two SPDs
(upsampling factors are both equal to 2) and produces three
point clouds P0;P1, and P2 with a size of 512� 3; 1024� 3,
and 2048� 3, respectively. For the three-step strategy (three
SPDs of upsampling factor 2), we particularly setNc ¼ N0 ¼
256 (see Section 3.1) so that it outputs 4 point clouds of the
sizes 256� 3; 512� 3; 1024� 3, and 2048� 3. Note that the
baseline is two-step splitting with an additional SPD
(upsampling factor equals 1), which serves to rearrange the
initial point positions. By comparing the one-step strategy
with the other strategies, we can find that multiple steps of
splitting boost the performance of SnowflakeNet signifi-
cantly (in terms of average CD), this should credit to the col-
laboration between SPDs. By comparing two-step strategy
with three-step strategy, we can find that the two-step split-
ting suffices for generating a sparse point cloud with 2048
points (not necessarily for a dense one with more points),
and extra SPDs may not improve the performance but will
increase the computational burden. By comparing the two-
step strategy with the baseline, we can find that the addi-
tional SPD that adjusts the initial point positions can facili-
tate the point splitting process.

4.5.4 Effect of Neighbor Number k

As mentioned in Section 3.3, the skip-transformer aggre-
gates local geometric pattern among the k nearest neigh-
bors. Therefore, Table 10 shows the effect of k, which is
denoted as Full. Additionally, since Self-att variation (see
Table 7) also adopts the k-NN strategy to conduct self-atten-
tion, we also explore its performance. The results in Table 10
indicate that under different neighbor numbers k, the Full
model outperforms the Self-att variation. Moreover, a small

k (4, 8, and 16) cannot help to improve the performance of
Self-att. In contrast, the performance of the Full model can
steadily improve as the k increases from 4 to 32, which fur-
ther proves the necessity and effectiveness of skip-trans-
former. Furthermore, as k becomes larger, the performance
of Full will not change dramatically, since an oversized
neighborhood could introduce noise and the skip-trans-
former cannot focus on the local context. In our paper, we
set k to 16 to balance the trade-off between performance and
inference efficiency.

4.5.5 Robustness to Random Noise

We explored the robustness of SnowflakeNet to noise per-
turbation by adding Gaussian noise to the input point
clouds, and the results are shown in Table 11. During train-
ing, we add zero mean Gaussian noise and change the noise
degree by randomly adjusting the standard deviation,
which ranges from 0 (0%) to 0.02 (denoted as 2.0% in
Table 11). During the evaluation, we test the performance
on five noise levels (0%, 0.5%, 1.0%, 1.5% and 2.0%). The
quantitative results in Table 11 show that the random noise
during training can hamper the performance on noise-free
point clouds (by comparing 0% with baseline). However,
training with noisy point clouds could also significantly
improve the robustness to moderate noise degrees, where
the network performs stably under noise perturbation levels
ranging from 0.5% to 1.5%. As the noise level dramatically
increases (2.0%), the quantitative performance will degrade
due to the large corruption of partial inputs. We also pres-
ent visual results under different noise levels in Fig. 12,
from which we can find that under the 2.0% noise level, the
input point cloud almost lost its underlying structure (see
the car instance), but our model can still complete the over-
all shape and produce plausible point clouds.

4.5.6 Visualization of Point Generation Process of SPD

In Fig. 13, we visualize the point cloud generation process of
SPD. We can find that the SPD layers generate points in a
snowflake-like pattern. When generating the smooth plane

TABLE 8
Effect of Each Part in SnowflakeNet

Methods avg. Couch Chair Car Lamp

Folding-expansion 8.80 8.40 10.80 5.83 10.10
EPCN+SPD 8.93 9.06 11.30 6.14 9.23
w/o preservation loss 8.50 8.72 10.6 5.78 8.9
PCN-baseline 13.30 11.50 17.00 6.55 18.20
Full 8.48 8.12 10.6 5.89 9.32

TABLE 9
Effect of the Splitting Strategy

Splitting strategy avg. Couch Chair Car Lamp

one-step 9.53 6.03 11.0 9.94 9.26
two-steps 8.64 6.00 10.3 9.62 8.66
baseline 8.48 5.89 10.6 9.32 8.12
three-steps 8.66 6.04 10.0 9.53 9.02

TABLE 10
Effect of k-NN

k 4 8 16 32 64

Self-att 8.83 8.71 8.89 8.64 8.61
Full 8.69 8.51 8.48 8.37 8.38

TABLE 11
Robustness to Random Noise

Noise levels avg. Couch Chair Car Lamp

baseline 8.48 5.89 10.60 9.32 8.12
0% 8.81 6.04 11.05 9.05 9.09
0.5% 8.79 6.10 11.00 8.94 9.14
1.0% 8.90 6.32 10.99 9.11 9.17
1.5% 9.37 6.65 11.59 9.48 9.78
2.0% 10.56 7.29 13.21 10.72 11.04

We add noise of levels ranging from 0% to 2.0%, where 2.0% denotes zero
mean Gaussian noise and the standard deviation is set to 0.02.
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(e.g., chair and lamp in Fig. 13), we can see the child points
are generated around the parent points and are smoothly
placed along the plane surface. However, when generating
thin tubes and sharp edges, the child points can precisely
capture the geometries.

4.6 Point Cloud Auto-Encoding

The task of point cloud auto-encoding aims to reconstruct a
point cloud from its reduced and encoded representation.
Since it heavily relies on the generation ability of the
decoder, we use the decoding part of SnowflakeNet in point
cloud auto-encoding to evaluate the generation ability of
snowflake point deconvolution.

4.6.1 Dataset and Evaluation Metric

Dataset. To fairly evaluate the generation ability of SPD, we
follow the same experimental settings of DPM [63] and con-
duct point cloud auto-encoding on the ShapeNet [83] data-
set. The ShapeNet [83] dataset contains 51,127 shapes from
55 categories. We use the same training, testing, and evalua-
tion split of DPM [63], where the ratios of training, testing
and, validation sets are 80%, 15%, and 5%, respectively. To
evaluate the generation ability under both simple and diffi-
cult settings, we conduct experiments on three categories
(i.e., car, airplane and chair) of ShapeNet separately, and also
verify the performance of SPD on the entire ShapeNet
dataset.

Evaluation Metric. The commonly used Chamfer distance
(CD) and Earth Mover’s distance (EMD) are adopted as the
evaluation metrics.

4.6.2 Network Arrangement and Training Loss

Network Arrangement. The auto-encoding task aims to evalu-
ate the reconstruction ability of our decoder. We follow
DPM and replace our feature extractor with a simple Point-
Net [81] encoder, so that the encoding settings are the same
as those of other methods. In addition, the ground truth
shapes used in auto-encoding have 2,048 points, so we use
our seed generator and two stacked SPDs (each has an
upsampling factor of 2) as the decoder. In the seed genera-
tor, we set Nc to 512 and take Pc as the output of the seed
generator, where Pc and P0 are the same point cloud. This

arrangement ensures that the generation of point cloud
relies only on the latent code extracted from the encoder.

Training Loss. We use L2 Chamfer distance (CD) in Eq. (6)
and Earth Mover’s distance (EMD) in Eq. (9) as our recon-
struction loss, which is given as follows:

Lrecon ¼
X

i2f0;2g
LCD2

ðPi;P0
iÞ þ LEMDðPi;P0

iÞ; (12)

where P0
i is the downsampled ground truth shape that has

the same point density of Pi.

4.6.3 Quantitative Comparison

The quantitative comparison is given in Table 12. Even
though only two SPDs are used in the decoder, our method
still achieves the best performance among the compared
counterparts in terms of both L2 CD and EMD. Especially
on the entire ShapeNet dataset, SnowflakeNet reduces the
average CD by 1.05, which is 20% lower than that of
DPM [63] (5.25 in terms of average CD). At the same time,
our method also outperforms the other methods across all
categories in terms of per-category CD and EMD. Therefore,
the better results on point cloud auto-encoding fully dem-
onstrate the generation ability of the decoder of our Snow-
flakeNet, especially snowflake point deconvolution.

4.6.4 Visual Comparison

The qualitative comparison is shown in Fig. 14. We visually
compare SnowflakeNet with the state-of-the-art generation
method DPM. Fig. 14 shows that SnowflakeNet is able to
generate point clouds with more detailed geometric struc-
tures, such as the handle of the cup and the motor tires.
Meanwhile, the points generated by SnowflakeNet are
much more uniform and tend to cover the surface of the
shape evenly, which should be credited to the excellent

Fig. 12. Completion results under different noise levels.

Fig. 13. Visualization of snowflake point deconvolution on different
objects. For each object, we sample two patches of points and visualize
two layers of point splitting together for each sampled point. The gray
lines indicate the paths of the point splitting from P1 to P2, and the red
lines are splitting paths from P2 to P3.
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generation ability of SPDs. In addition, we visualize the
interpolation and extrapolation between latent codes in
Fig. 15, where the source shapes are in yellow, and the inter-
polated and extrapolated shapes are in red. Fig. 15 shows
that the output of SnowflakeNet is able to transit smoothly
according to latent interpolation and extrapolation, even
though the transition is between different categories (table
and chair, the last row). Moreover, the interpolated and
extrapolated shapes can still maintain a visually uniform
point distribution, which shows the generation stability of
our decoder.

4.7 Novel Shape Generation

In addition to point cloud auto-encoding, we also apply our
network to point cloud generation to demonstrate its novel
shape generation ability.

4.7.1 Dataset and Evaluation Metric

Dataset. For the task of point cloud generation, we follow
DPM [63] and conduct experiments on the ShapeNet data-
set. We quantitatively compare our method with several
state-of-the-art generative models on the two categories
(i.e., airplane and chair) in ShapeNet. The generated point
clouds and the reference point clouds are normalized into a
bounding box of ½�1; 1�.

Evaluation Metric. To evaluate the generation quality of
our method, we follow prior works [63], [64], [73] and

employ the coverage score (COV), the minimum matching
distance (MMD), the 1-NN classifier accuracy (1-NNA), and
the Jenson-Shannon divergence (JSD). The COV score meas-
ures whether the generated samples cover all the modes of
the data distribution and the MMD score measures the fidel-
ity of the generated samples. The 1-NNAmeasures the simi-
larity between the distributions of the generated samples
and the reference samples. If the accuracy of the 1-NN classi-
fier is closer to 50% (random guess), and the generation qual-
ity is considered to be better. The JSD score measures the
similarity between the marginal point distributions of the
generated set and the reference set. Meanwhile, we adopt L2

CD and EMD to evaluate the reconstruction quality.

4.7.2 Network Arrangement and Training Loss

Network Arrangement. The network arrangement in this sec-
tion is the same as point cloud auto-encoding (Section 4.6.2).

Training Loss. To help our decoder to generate novel
shapes, we employ normalizing flows [63], [90], [91] to
parameterize the prior distribution pðfÞ, where f is the latent
code extracted by the encoder. The normalizing flow is
essentially a stack of affine coupling layers, which provides
a trainable bijection Fa that maps an isotropic Gaussian to a
complex distribution [63]. The prior distribution can be
computed by

pðfÞ ¼ pwwwwwwwðwwwwwwwÞ 	
���� det

@Fa

@wwwwwww

����
�1

; (13)

where wwwwwww ¼ F�1
a ðfÞ, and pwwwwwwwðwwwwwwwÞ is the isotropic Gaussian

Nð0; IÞ. Similar to DPM [63], we adopt PointNet [81] as the
architecture for m and S of the encoder qðfjPÞ. Together

TABLE 12
Comparison of Point Cloud Auto-Encoding in Terms of CD and EMD on ShapeNet

Dataset Metric Atlas (S1) [62] Altas (P25) [62] PointFlow [64] ShapeGF [73] DPM [63] Ours

Airplane CD 2.00 1.80 2.42 2.10 2.19 1.51
EMD 4.31 4.37 3.31 3.50 2.90 2.44

Car CD 6.91 6.50 5.83 5.47 5.49 4.68
EMD 5.67 5.41 4.39 4.49 3.94 3.35

Chair CD 5.48 4.98 6.80 5.15 5.68 4.58
EMD 5.56 5.28 5.01 4.78 4.15 3.67

ShapeNet CD 5.87 5.42 7.55 5.73 5.25 4.20
EMD 5.46 5.60 5.17 5.05 3.78 3.44

L2 CD and EMD are multiplied by 104 and 102, respectively.

Fig. 14. Visual comparison of reconstructed point clouds between differ-
ent auto-encoders.

Fig. 15. Latent space interpolation and extrapolation. The interpolation
step is 0.2, the source shapes are in yellow (denoted as “0” and “1.0”),
and the interpolated and extrapolated shapes are in red.
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with the reconstruction loss in Eq. (12), the training loss for
point cloud generation is given as follows:

Lgen ¼ DKLðqðfjPÞjjpwwwwwwwðwwwwwwwÞ 	
����det

@Fa

@wwwwwww

����
�1

Þ þ Lrecon; (14)

whereDKL is the KL divergence. To generate a point cloud,
we first obtain the latent code f by drawing wwwwwww 
 Nð0; IÞ and
pass wwwwwww through Fa and then pass the latent f to our decoder.

4.7.3 Quantitative and Qualitative Results

In Table 13, we quantitatively compare our methods with
the following state-of-the-art generative models: DPM [63],
ShapeGF [73], PointFlow [64], TreeGAN [72], GCN-
GAN [71], and PC-GAN [70]. We follow the same experi-
mental settings as DPM [63] and all the other results are
cited from DPM [63]. Table 13 shows that our method is
highly competitive compared to the latest generative mod-
els, such as ShapeGF [73] and DPM [63], and is significantly

better than the other methods. Moreover, we also achieve
the best results on the MMD score of the airplane category,
which proves the generation ability of our method. In
Fig. 16, we visually present some point cloud samples gen-
erated by our method, from which we find that our method
is able to generate novel shapes with good uniformity.
Although the latent code is randomly sampled from Gauss-
ian distribution, which leads uncertainty to the decoder, our
method can still generate diverse novel shapes while main-
taining enriched local geometric structures. Therefore, the
visual generation results further demonstrate the excellent
generation quality of our snowflake point deconvolution.

4.8 Single Image Reconstruction

In this section, we extend our network to the task of single
image reconstruction (SVR), of which the goal is to recon-
struct a point cloud from an image of the underlying object.

4.8.1 Dataset and Evaluation Metric

Dataset. For the single view reconstruction task, we employ
the ShapeNet [83] dataset containing 43783 shapes from 13
categories. The dataset is split into training, testing, and val-
idation sets by the ratios of 70%, 20%, and 10%, respectively.
During training, we track the loss of our method on the vali-
dation set to determine when to stop training. The testing
set is used for quantitative and qualitative comparison. The
baseline methods include 3D-R2N2 [92], PSGN [68], Pixel2-
Mesh [93], AtlasNet [62], OccNet [94], and the state-of-the-
art methods like Pix2Vox [95], Pix2Vox++ [96], DPM [63],
and 3DAttriFlow [69]. For a fair comparison, we follow [69],
[94] and sample 30 k points from the watertight mesh as the
ground truth.

Evaluation Metric. We adopt the L1 Chamfer distance
(CD) to evaluate the generation quality among all counter-
parts. In our experiment, we set the output point density of
all methods to 2,048. The output points of voxel-based (Pix2-
Vox [96]) andmesh-based (Pixel2Mesh [93] and OccNet [94])

TABLE 13
Comparison of Novel Point Cloud Generation Performance in Terms of L2 CD and EMD

COV(%; ") MMD(#) 1-NNA(%; #) JSD(#)
Shape Model CD EMD CD EMD CD EMD -

Airplane

PC-GAN [70] 42.17 13.84 3.819 1.810 77.59 98.52 6.188
GCN-GAN [71] 39.04 18.62 4.713 1.650 89.13 98.60 6.669
TreeGAN [72] 39.37 8.40 4.323 1.953 83.86 99.67 15.646
PointFlow [64] 44.98 44.65 3.688 1.090 66.39 69.36 1.536
ShapeGF [73] 50.41 47.12 3.306 1.027 61.94 70.51 1.059
DPM [63] 48.71 45.47 3.276 1.061 64.83 75.12 1.067

Ours 46.29 44.98 3.271 1.002 69.35 73.15 1.630

Chair

PC-GAN [70] 46.23 22.14 13.436 3.104 69.67 100.00 6.649
GCN-GAN [71] 39.84 35.09 15.354 2.213 77.86 95.80 21.708
TreeGAN [72] 38.02 6.77 14.936 3.613 74.92 100.00 13.282
PointFlow [64] 41.86 43.38 13.631 1.856 66.13 68.40 12.474
ShapeGF [73] 48.53 46.71 13.175 1.785 56.17 62.69 5.996
DPM [63] 48.94 47.52 12.276 1.784 60.11 69.06 7.797

Ours 48.83 36.91 12.742 1.830 58.85 75.08 7.579

CD is multiplied by 104 and EMD is multiplied by 102.

Fig. 16. Examples of novel point clouds generated by our model.
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methods are sampled on their generated mesh, and the sam-
pling strategy is the same as [94].

4.8.2 Network Arrangement and Training Loss

Network Arrangement. The network framework of SVR con-
sists of an encoder and a decoder. We use ResNet [97]
(ResNet-18) as the encoder to align with the other baseline
methods, and the dimension of the latent code is trans-
formed to 128 by a linear layer. For our decoder, the arrange-
ment is the same as auto-encoding (Section 4.6.2).

Training Loss. We use the Chamfer-L1 distance (CD) as the
training loss for single image reconstruction,which is given as

LSVR ¼
X

i2f0;2g
LCD1

ðPi;Pi
iÞ: (15)

4.8.3 Quantitative Comparison

In Table 14, we quantitatively compare our method with the
baseline methods listed in Section 4.8.1. The quantitative
results in Table 14 demonstrate that our method has the
best reconstruction performance among all compared meth-
ods. Moreover, our method achieves the best per-category
CD across all shape categories, which fully demonstrates
the generalization ability of our method.

4.8.4 Visual Comparison

We visually compare the reconstruction results in Fig. 17,
which illustrates the best reconstruction quality of our
method among all baseline methods. Limited to voxel reso-
lution, the reconstruction results of Pix2Vol++[96] can accu-
rately reconstruct the overall shape but fail to reveal
detailed geometries. DPM [63] produces too much noise
and requires additional denoising in post-processing steps.
Compared with 3DAttriFlow [69], our method is able to
reconstruct the underlying object while recovering smooth
surfaces, and the SPD enables our decoder to produce
shapes with less noise and smoother surfaces.

4.9 Point Cloud Upsampling

Given a sparse, noisy, and non-uniform point cloud, the task
of point cloud upsampling requires upsampling and gener-
ating a dense and uniform point cloud. Because it is also a
generation problem, we extend snowflake point deconvolu-
tion (SPD) to point cloud upsampling in this section.

4.9.1 Dataset and Evaluation Metric

Dataset. To compare the upsampling quality of SPD with
state-of-the-art methods, we use the benchmark dataset pro-
vided by PU-GAN [55] with 120 training and 27 testing
objects. Each training object is cropped into 200 overlapped
patches, and there are a total of 24,000 training surface
patches. Each surface patch has 1,024 points. During train-
ing, we randomly sample 256 points as input. For testing
objects, we follow [55] and use Poisson disk sampling to
sample 8192 points as the ground truth shape, and 2,048
points are further sampled as input. Since the performance
of point cloud upsampling is highly sensitive to the quality

TABLE 14
Single Image Reconstruction on the ShapeNet Dataset in Terms of Per-Point L1 Chamfer Distance �102 (Lower is Better)

Methods Average Plane Bench Cabinet Car Chair Display Lamp Loud. Rifle Sofa Table Tele. Vessel

3DR2N2 [92] 5.41 4.94 4.80 4.25 4.73 5.75 5.85 10.64 5.96 4.02 4.72 5.29 4.37 5.07
PSGN [68] 4.07 2.78 3.73 4.12 3.27 4.68 4.74 5.60 5.62 2.53 4.44 3.81 3.81 3.84
Pixel2mesh [93] 5.27 5.36 5.14 4.85 4.69 5.77 5.28 6.87 6.17 4.21 5.34 5.13 4.22 5.48
AtlasNet [62] 3.59 2.60 3.20 3.66 3.07 4.09 4.16 4.98 4.91 2.20 3.80 3.36 3.20 3.40
OccNet [94] 4.15 3.19 3.31 3.54 3.69 4.08 4.84 7.55 5.47 2.97 3.97 3.74 3.16 4.43
Pix2Vox [95] 4.28 3.48 4.47 4.39 3.56 4.04 4.47 5.66 5.10 3.80 4.37 4.29 3.84 4.14
Pix2Vox++ [96] 4.17 3.65 4.40 3.99 3.48 3.97 4.40 5.63 4.84 3.78 4.12 4.01 3.68 4.28
DPM [63] 3.76 2.64 3.56 3.46 3.23 4.15 4.35 5.18 5.14 2.41 4.15 3.71 3.42 3.52
3DAttriFlow [69] 3.02 2.11 2.71 2.66 2.50 3.33 3.60 4.55 4.16 1.94 3.24 2.85 2.66 2.96

Ours 2.86 1.99 2.54 2.52 2.44 3.13 3.37 4.34 3.98 1.84 3.09 2.71 2.45 2.80

Fig. 17. Visual comparison of single image reconstruction. Voxels are in
blue, and point clouds are in red.

TABLE 15
Quantitative Comparison on the Point Cloud Upsampling Task in

Terms of CD �103 and HD �103

Methods Size

FPS RS

CD HD CD HD

PU-Net [14] 10.1 M 0.473 4.680 0.532 5.441
PU-GAN [55] 9.57 M 0.246 3.011 0.269 4.687
Dis-PU [67] 13.2 M 0.210 2.771 0.278 4.289

Ours 1.37 M 0.199 2.701 0.270 3.787

FPS stands for farthest point sampling, and RS denotes random sampling.
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of input point clouds, we get the inputs under two settings:
farthest point sampling (FPS) [81] and random sampling. To
mitigate the instability brought by random sampling, we
repeat the test under random sampling five times and take
the average scores as the final results.

Evaluation Metric. We use the L2 Chamfer distance (CD)
and the Hausdorff distance (HD) [98] as the evaluation met-
ric for a fair comparison with other methods.

4.9.2 Network Arrangement and Training Loss

Network Arrangement. For the task of point cloud upsam-
pling, four stacked SPDs are used to upsample the sparse
point cloud into a dense one. The upsampling factors
r1; r2; r3, and r4 of the four SPDs are 1, 2, 2, 1, respectively.
Because point cloud upsampling requires the output point
cloud to be uniform, we add another SPD (of which r4 = 1)
to refine the upsampled point cloud.

Training Loss. We use only the L2 Chamfer distance (CD)
to train our network, and the training loss is given as follows:

Lupsampling ¼
X

i2f1;3;4g
LCD2

ðPi;P0
iÞ; (16)

where P0
i is the downsampled ground truth shape that has

the same point density as Pi.

4.9.3 Quantitative Comparison

In Table 15, we quantitatively compare our method with the
following state-of-the-art point cloud upsampling methods:
PU-Net [14], PU-GAN [55], and Dis-PU [67]. FPS stands for
farthest point sampling, and RS denotes random sampling.
We use the pre-trained models provided by these methods
for testing on the same test set. From Table 15, we can find
that our method achieves the best performance in terms of
both L2 CD and HD under the FPS setting. Even though our
method is not trained with repulsion loss [14] or uniform
loss [55], our method can recover the underlying surface
while maintaining good point uniformity. Meanwhile,
under the RS setting, the CD scores of PU-GAN, Dis-PU,
and SPD (Ours) are highly close to each other, and we
achieve a much better result in terms of HD. Moreover, by
comparing the model size with the other methods in terms
of parameter number, we find that the model size of our

method is significantly smaller than those of the others,
which further proves the efficiency of snowflake point
deconvolution.

4.9.4 Visual Comparison

In Fig. 18, we visually compare our method with the state-
of-the-art methods listed in Table 15. From Fig. 18, we can
find that our method can produce the most similar visual
results to the ground truth shape. Whether the ground truth
shape has complex tiny local structures (the second shape)
or simple flat regions (the third shape), our method can pre-
serve a uniform point distribution.

5 CONCLUSION, LIMITATION AND FUTURE WORK

In this paper, we propose a novel neural network for point
cloud completion, named SnowflakeNet. SnowflakeNet
models the generation of complete point clouds as the
snowflake-like growth of points in 3D space using multiple
layers of snowflake point deconvolution (SPD). By further
introducing a skip-transformer in SPD, SnowflakeNet learns
to generate locally compact and structured point clouds
with highly detailed geometries. We conduct comprehen-
sive experiments on sparse (Completion3D) and dense
(PCN) point cloud completion datasets, which shows the
superior performance of our method over the current SOTA
point cloud completion methods. We further extend SPD to
more point cloud generation tasks, such as point cloud
auto-encoding, novel point cloud generation, single image
reconstruction, and upsampling. The generation ability of
Snowflake Point Deconvolution is fully demonstrated by
both quantitative and qualitative experimental results.

The main limitation of SnowflakeNet is that the skip-
transformer in SPD merely aggregates information from the
k-nearest neighbors (k-NN) of each point. While the k-NN
strategy enables the SPD to focus on local structure, it also
disenables the SPD to capture the long-range shape context.
Therefore, when the input point cloud contains too much
noise, SPD is unable to arrange point splitting properly. In
our opinion, a potential and promising future work to
address this problem is to further explore the local and
global feature fusion in SPD, so that SPD can adapt well to
more complex shape contexts.

Fig. 18. Visual comparison of point cloud upsampling.
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Another limitation is that SPD generates the same num-
ber of child points for all seed points, despite different num-
bers of points being needed to represent different parts of
the shape. For example, it requires more points to represent
the lampshade than the lamppost. It would be ideal if SPD
can adaptively split seed points based on the complexity of
local shape contexts; this may require significant changes to
the network.
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