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Abstract

Industry foundation classes (IFC) is an open and neutral data format specification for building information modeling
(BIM) that plays a crucial role in facilitating interoperability. With increases in web-based BIM applications, there is an
urgent need for fast loading large IFC models on a web browser. However, the task of fully loading large IFC models
typically consumes a large amount of memory of a web browser or even crashes the browser, and this significantly
limits further BIM applications. In order to address the issue, a method is proposed for dynamically loading IFC models
based on spatial semantic partitioning (SSP). First, the spatial semantic structure of an input IFC model is partitioned
via the extraction of story information and establishing a component space index table on the server. Subsequently,
based on user interaction, only the model data that a user is interested in is transmitted, loaded, and displayed on the
client. The presented method is implemented via Web Graphics Library, and this enables large IFC models to be fast
loaded on the web browser without requiring any plug-ins. When compared with conventional methods that load all
IFC model data for display purposes, the proposed method significantly reduces memory consumption in a web
browser, thereby allowing the loading of large IFC models. When compared with the existing method of spatial
partitioning for 3D data, the proposed SSP entirely uses semantic information in the IFC file itself, and thereby
provides a better interactive experience for users.
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Introduction
During the last decade, building information modelling
(BIM) received significant attention in the domain of
Architecture, Engineering, and Construction (AEC) [1].
Additionally, BIM also plays an increasingly important
role in smart buildings and smart cities. When com-
pared with CAD, BIM contains geometric and rich
semantic information on building models and their
relationships to support lifecycle data sharing. Specif-
ically, industry foundation classes (IFC) is an open
and neutral data format specification for BIM [2, 3]
that describes building and construction industry data
and facilitates interoperability between BIM applications.
IFC files can be imported or exported through most
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market-leading BIM software [4]. Recently, studies devel-
oped various IFC-based approaches and applications
(e.g., refs. [4–9]).
With increases in web-based BIM applications, there

is an urgent need for fast loading large IFC models
on a web browser [10]. For example, several construc-
tion projects require various participants to share and
access BIM data through the web where it corresponds
to the basic requirement for fast loading IFC files into
the web browser and displaying them in real time. There
exist a few web-based platforms to manage and display
IFC models [11–13] such as the well-known BIMserver
[11]. However, the task of loading large IFC models
typically consumes a large part of the memory of web
browser or even crashes the browser, and this signifi-
cantly limits further BIM applications. It is still challeng-
ing to fast load large IFC models to satisfy specific BIM
applications.
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Given the memory limitation on the web browser, it is
not appropriate to fully load large IFC models [14]. In a
few BIM applications, project participants first browse the
appearance of BIM model and subsequently interactively
select a few local interest parts of the model. Therefore, it
is important to set a suitable loading strategy that satisfies
these types of applications.
In the study, we present a method for dynamically

loading IFC models based on spatial semantic partition-
ing (SSP). First, the SSP of an input IFC model is pre-
computed on the server and is subsequently passed to
the client. Next, only the external components of the IFC
model are extracted from the nodes of SSP that are ini-
tially loaded for displaying the appearance of the IFC
model. The spatial partitioning of the model’s stories and
establishment of the space index table of components
makes it possible to ensure that only the components
that are related to the user’s interactive selection are
transmitted, loaded, and displayed on the client. The pre-
sented method is implemented via Web Graphics Library
(WebGL), and this enables large IFC models to be fast
loaded on the web browser without requiring any plug-
ins. When compared with the conventional methods that
load all IFCmodel data for display purposes, the proposed
method significantly reduces the memory consumption
in a web browser. This allows the loading of large
IFC models and provides a better interactive experience
for users.

Related work
WebGL is a cross-platform web standard JavaScript API
for rendering 3D graphics within any compatible web
browser without requiring any plug-ins and is widely sup-
ported in modern browsers. Recently, a few platforms,
such as 3drepo.io [15] and webVis/Instant3DHub [16],
began to provide support for commercial web-based 3D
rendering. Various efforts focused on transmission for-
mat to stream 3D models, such as Shape Resource Con-
tainer (SRC) [17] and GL Transmission Format (glTF)
[18]. However, extant studies do not focus on dynam-
ically loading, and this makes it difficult to load large
IFC files on the web browser. Recently, a few stud-
ies also examined dynamically loading of 3D data [19–
24]. For example, Shen et al. [19] constructed a game
scene by using the geometric data of the BIM model.
Chen et al. [20] dynamically animated game data via
WebSocket. Lavoue et al. [22] implemented a progres-
sive compression algorithm based on user operations
on a web browser. Wang et al. [23] proposed a fast
dynamic transmission method for 3D cloud data. Li et
al. [24] presented a system for the progressive com-
pression and transmission of a 3D model with WebGL.
However, the aforementioned transmission methods gen-
erally optimize transmission speed via the optimization of

data structure and algorithm, and thereby ignores spatial
information.
In order to extract spatial information, spatial partition-

ing is a commonly used method. A few methods were
developed to extract the external components based on
the bounding box [13]. Scully et al. [14] introduced a
spatial partitioning strategy for dynamically loading 3D
meshes with the aims of overcoming memory limitations
for small mobile devices and those imposed by browsers.
However, the aforementioned approaches only focus on
the geometric information of 3D objects and ignore the
semantic information present in IFC models. A few stud-
ies also discuss spatial partitioning for 3D data of shape
or scene by combining specific semantic information. For
example, Held et al. [25] proposed a method that incor-
porates spatial, temporal, and semantic cues in a coherent
probabilistic framework for spatial partitioning. Babacan
et al. [26] proposed a semantic segmentation method
for indoor point clouds via a convolutional neural net-
work. However, the aforementioned semantic partitioning
methods mainly focused on extracting and generating
semantic information for 3D data of shapes or scenes
in their applications, and this is not appropriate for IFC
models. Specifically, a large amount of rich semantic infor-
mation is originally carried by IFC files in addition to
their specification, and this includes information involv-
ing types of spaces, properties of building components
and building functions, and various relationships between
building components. Thus, this type of semantic infor-
mation potentially provides a wealth of a priori knowledge
for the SSP of IFC models, and this corresponds to the
major difference between IFC models and other general
3D data.

Contributions
Based on ref. [14], we present a method for dynamically
loading an IFC model on the web, and this is based on
SSP. Spatial partitioning is used in ref. [14] and only parti-
tions 3D geometric meshes into a few submeshes without
further considering the semantic information carried by
the IFC model itself. Conversely, the proposed method
partitions an IFC model by simultaneously considering its
geometric information and semantic information in the
IFC model itself. The main contributions of our study are
as follows.
First, a method is presented for dynamically loading IFC

models on the web. When compared with the conven-
tional methods that load all IFCmodel data for displaying,
the proposed method significantly reduces memory con-
sumption in a web browser, and this allows the loading of
large IFC models.
Secondly, a novel SSP method is presented for the

IFC model, and this constitutes the core of the study.
When compared with the existing method of spatial
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partitioning for 3D data, the presented SSP maximizes
the use of semantic information carried by the IFC file
itself, and this provides a better interactive experience
for users.
Finally, the presented method is implemented via

WebGL, and this enables large IFC models to be fast
loaded on the web browser without requiring any plug-ins.

Method
With respect to large IFC models, it is challenging to
load and display all the model data on the client. In sev-
eral practical applications, BIM participants typically only
focus on the specific parts and components while brows-
ing the IFC model, and thus a possible method is to
dynamically load and display a sub-model as opposed to
the full model. This is performed by dynamically loading
a few building components of the IFC model based on a
user’s interactive selection.
In this section, a method for dynamically loading IFC

models based on SSP is proposed. The semantic par-
titioning of the model story and establishment of the
component space index table allows only the model data
that the user is interested in to be transmitted, loaded, and
displayed. The spatial partitioning referred to in the study
is mainly based on semantic information of the IFCmodel,
and this includes the internal and external space of the IFC
model, different story spaces, and the space generated via
model bounding box partitioning.
The structure diagram of the proposedmethod is shown

in Fig. 1. First, the spatial semantic structure of an input
IFC model is partitioned via the extraction of story infor-
mation and establishment of the component space index
table on the server. Subsequently, based on the user
interaction, we dynamically calculate the list of compo-
nents and obtain the corresponding components from the
server. Next, we use the adaptive network transmission

algorithm to transmit basic geometric units to the client,
and the basic geometry unit is cached. Finally, the basic
geometry unit is loaded and displayed on the client.

Semantic partitioning of IFC model spatial structure
The partitioning of an IFC model spatial structure mainly
consists of the following three operations: external com-
ponent extraction, extraction of story information, and
establishment of spatial index. The operations are all on
the server side. We establish the spatial index based on
the bounding box of IFC model, and this makes it easy for
users to browse specific parts of the IFC model.

External component extraction based on node
classification
When BIM participants browse the IFC model, the exter-
nal structure is more attractive. When the users explore
the model, they focus on the details of the model. Based
on the observation, while displaying the IFC model, the
external components of the IFC model are preferentially
loaded, and the external structure of the IFC model is
quickly displayed, thereby effectively improving users’
browsing experience.
Currently, there are a few methods for extracting the

external components of the IFC model, and a few meth-
ods were developed to extract the external components
based on the bounding box [13]. The algorithm first cal-
culates the bounding box of each building component
and the bounding box of the whole model. Subsequently,
the minimum cover set of each face is calculated via
the projection method from six directions. For exam-
ple, in order to calculate the minimum cover set of the
front of the model (assumed to be the xy plane), it ini-
tially sorts the bounding boxes of all the components of
the model along the z-axis and calculates the projection
area of each component bounding box in the xy plane

Fig. 1 Structure diagram of the proposed method
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Fig. 2 External component extraction based on the bounding box. The external windows and doors are extracted incorrectly. a Original model b
Result based on the bounding box algorithm

from near to far. Subsequently, if the component does not
cover the previously covered area, then it is added into
the minimum cover set. Finally, the six faces obtain the
cover set and external components. The external com-
ponent extraction algorithm based on the bounding box
omits a few external components in a few cases as shown
in Fig. 2.
The main reason for the aforementioned omission of

the algorithm is that each component is abstracted into a
bounding box to increase the volume of the component,
and only the area covered by the projection is considered.
As shown in Fig. 2, the bounding-box based extraction
algorithm omits the window. This is because the doors
and windows are embedded inside the wall while their
bounding boxes are contained in the wall’s bounding box.
Therefore, they do not appear in the extracted external
component. In order to avoid this type of a situation
wherein building components are missed, we propose an
external component extraction algorithm based on node
classification. The pseudo-code of the algorithm is shown
in Algorithm 1.
The algorithm initially calculates the bounding boxes of

all the components and merges them to form the bound-
ing box of the complete IFC model. Subsequently, the
length and width of the bounding box of the model are
divided by t (the number of SSP) and the bounding box
space is divided into t3 small cube nodes of equal size
as shown in Fig. 3a where the whole bounding box of
the model is divided into multiple cube nodes of equal
size. We then calculate the intersection of each small cube
node with all the components in the model. The exter-
nal part is calculated from one of the six faces (marked
as face P) of the bounding box. The details of the pro-
cess are as follows. First, the small cube nodes in the
t rows and t columns on the face P are numbered as
P11...P1t ...Pt1...Ptt , and subsequently they are processed
followed by a row and column as shown in Fig. 3b and c.
With respect to a certain node Pmn, it is determined as to
whether each small cube node contains any component
behind Pmn; if so, it indicates that the small cube obscures

the component behind Pmn. The component contained by
the small cube corresponds to the external component in
the direction of face P. The cube and its subsequent d
cubes are marked as shown in Fig. 3d. We then obtain
the components contained by the marked cubes and stop
searching in this direction. If there is no component,
we continue to determine as to whether the next small
cube node contains a component. When all small cube
nodes P11...P1t ...Pt1...Ptt are completely processed, all the
external components in the direction followed by P are
obtained.

Algorithm 1 The pseudo-code of the algorithm
Input: S: all components of the IFC model; t: the number

of spatial semantic partitioning; d: the depth;
Output: E: External components;
1: Calculate the bounding box B of the IFC model based

on all the components;
2: Divide the length, width, and height of the bounding

box into t3 small cube nodes of equal size;
3: Calculate the intersection of each small cube node

with all the components and record the intersection
of the component number in turn;

4: Calculate the external components from a random
face P;

5: Number the small cube nodes in the t rows and t
columns on the face P as P11...P1t ...Pt1...Ptt ;

6: For Pmn from near to far traversal behind the t cube
nodes. While obtaining the first small cube node con-
taining the component, the node and the subsequent
d nodes are simultaneously marked. Then, check the
next cube node Pm n+1 or Pm+1 n of the face P;

7: If all six faces are calculated, then execute step 8;
otherwise repeat step 4;

8: Extract the component numbers contained in the
marked nodes and merge them;

9: return E.
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Fig. 3 Extracting external components based on node classification. The external doors and windows are extracted accurately. a Bounding box
division b Choose a random column c Traversal from near to far d Get component

Figure 4 shows the results of the extraction of the two
faces of the model. As shown in Fig. 4, both sides of the
extraction result contain the correct external windows and
doors. However, Fig. 4a and b both contain the bases and
roofs. Therefore, after extracting the external components
on the six faces, it is necessary to remove duplicate com-
ponents in the results of the six faces, and only one of the
same external components is retained in the final result.
Finally, all the indexes of the external components of the
obtained model are stored.
The external component extraction algorithm based

on node classification considers the depth informa-
tion although a few members of the bounding box are
included. The cube node still intersects the component,

and this avoids the omission of external components due
to the overlapping of the bounding box.

Extraction of story information
The IFC model story information is mainly expressed
via the entities of IfcBuilding and IfcBuildingStory that
correspond to two types of nodes in the IFC model
tree. The IfcBuilding expresses the concept of a virtual
architectural spatial structure in the IFC standard, and
IfcBuildingStory expresses the concept of a story and a
few local spaces on the story. In an IFC model of an
actual project, IfcBuildingStory is typically associated with
IfcBuilding. An IfcBuilding entity can contain multiple
IfcBuildingStroery entities and an IfcBuildingStory entity

Fig. 4 Results after extracting the external components on different faces. All external building components including bases, roofs, walls, and
windows are extracted accurately. a Front b Side
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can also contain other IfcBuildingStory entities that form
a tree-like hierarchical structure. The algorithm for story
information extraction is shown in Algorithm 2.

Algorithm 2 The algorithm for story information extraction
Input: M: IFC model;
Output: R: Components sequenced by story information;
1: Get the IfcBuilding entity in the model;
2: Parse IfcBuildingStory data instance associated with

IfcBuilding, create a list of stories F1...Fn;
3: Take an IfcBuildingStory data instance to determine

as to whether it is a leaf node. If so, obtain its associ-
ated components through IfcRelContainedInSpatial-
Structure, and add it into the corresponding story list;
otherwise, go to step 4;

4: Get the other IfcBuildingStory data instance associ-
ated with IfcBuildingStory, and go to step 3;

5: Take a story from the story list Fi, and extract the story
of the external components;

6: Mark the un-extracted component in Fi as an internal
component;

7: If all the stories are resolved, go to step 8; otherwise,
go to step 4;

8: Sort the stories F1...Fn based on the height and output
of the components sequenced by story information.

9: return.

The story information is initially extracted via by the
IfcBuilding entity of the IFC model that is used as the
root node of the depth-first search. We then obtain all
the IfcBuildingStory entities contained by IfcBuilding.
Subsequently, with respect to each IfcBuildingStory entity,
it is determined as to whether the entity is a leaf node. If

so, all the components contained in the story entity are
obtained by parsing the IfcRelContainedInSpatialStruc-
ture (the node contains the inclusion relationship); oth-
erwise, the IfcBuildingStory entity contained in the story
is obtained. The process is executed recursively until all
story information is resolved. Subsequently, we respec-
tively extract the external components of each story. As
shown in Fig. 5, the components included in each story
are divided into external components and internal com-
ponents.

Spatial index table
The spatial index table is created to facilitate the users
to quickly navigate through the model locally. In order
to allow more devices to load and display the model, we
preload only the external components of the model or a
specific story of the external components for display pur-
poses. The details of the model are not loaded. The users
can use the spatial index table when they want to view the
components in detail.
First, the bounding box of the model is obtained as

mentioned in the previous section, and a series of equal
cubes are obtained based on the length and width. Subse-
quently, for each small cube, we determine all components
that it intersects with. The cube without a component
is removed. After preloading the external components,
the small cubes are loaded and displayed. An octree is
created in the scene, and the small cubes are added
to the octree. A few optimizations are performed to
ensure that multiple cube pairs do not repeatedly con-
sume client resources. The size of the small cube is
the same, and thus only the geometric data of a cube
is stored in the display, and other small cubes are dis-
played via the coordinate transformation. Finally, when
the user enters the model and wants to display a part

Fig. 5 Illustration of the entity IfcBuilding divided by the stories information
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Fig. 6 Spatial index table

of the model, only the small cube of the region is
selected to obtain the corresponding geometric data of
the components from the remote server. Figure 6 shows a
schematic diagram of the created component space index
table.

Dynamically loading via adaptive network transmission
The remote server begins to transfer the correspond-
ing model data when the users select a component
of the specific spatial structure interactively on the
web browser. The data contains several basic geomet-
ric units that consume significant bandwidth. Therefore,
it takes a long time for the browser to respond, and
this affects user experience. Therefore, an adaptive net-
work transmission algorithm is proposed as shown in
Algorithm 3. When the user selects the component to
be displayed, the model changes to the maximum pos-
sible extent in a uniform time period. This decreases
the size of data block when the network is not smooth
and increases the size of data block when the network
is smooth.

Table 1 Basic information for the three test industry foundation
classes models

Model name Figure Size(MB) Number of components

M1 a 157 9105

M2 b 278 13379

M3 c 171 7533

Algorithm3An adaptive network transmission algorithm
Input: E:List of components to be transferred;

�t:Transmission response time; k:Transfer speed
slide window size;

Output: T :Whether the basic geometric unit is com-
pletely transmitted;

1: Get the basic geometry of the component to be trans-
ferred;

2: The client requests the basic geometry block, and
record its request time tstart ;

3: Randomly take a basic geometry unit and merged it
into basic geometric data block with a size of sizeblock ;

4: Record the time at which the geometric data block
completes the transfer as tend, calculate the current
transmission speed based on Eq. (1), and push it to the
transmission speed stack;

5: Take the top k transmission speed from the stack, and
adjust the transmission speed using their average;

6: Calculate the size of new basic geometric data block
to be transmitted based on Eq. (2), determine as to
whether the list of basic geometric units to be trans-
mitted is empty. If so, go to step 7; otherwise, go to
step 2;

7: return True.

When the user selects a specific component to display,
the client first loads the basic information of the com-
ponents including the basic attributes, basic geometric
unit number, and positioning matrix. Subsequently, the
basic geometric unit is loaded by the adaptive network
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Fig. 7 Three test models for loading and displaying. aM1 bM2 cM3

transmission algorithm.When all the basic information of
the model is transmitted, the client begins to request the
geometric data corresponding to the component. First,
the client records the requested time tstart at the time of
the request and records the current basic geometric data
block transfer completion time tend after the transfer is
complete. Based on Eq. (1), we calculate the current basic
geometric data block transmission speed and push it to
the transmission speed stack. Subsequently, we select the
top k transmission speed to smooth. In order for the web
page to be updated in the time corresponding to �t, the
size of the basic geometric data block to be transmitted
next is dynamically adjusted based on Eq. (2), and the
aforementioned process is repeated until the transmission
is complete. In order to avoid re-downloading the geomet-
ric data from the remote server, the basic geometric unit
of the model is cached.

speedcurrent = sizeblock
tend − tstart

(1)

ceilingdynamic = (�k
1 speed)

k
∗ �t (2)

Results
We implemented our algorithm based on WebGL that
can run on most mainstream web browsers that support
WebGL (including Firefox, Chrome, IE11). Specially, we
run our experiments on Firefox browser (64bit) on Win-
dows 7Operating System (64bit) with CPU i5-3470 and 16
GB memory. In order to analyze the effect of the dynami-
cally loading method based on the SSP of IFC models, we
select three large models to test and analyze the resource
occupation, loading speed, display effect, and operation
fluency. The basic information of the three test models is
shown in Table 1, and the corresponding display is shown
in Fig. 7.

Analysis of resource occupation
In order to analyze resource occupation, we monitor the
memory footprint on the client. As shown in Fig. 8,
it consumes over 4.5 GB memory by the conventional
method that loads all IFC model data for displaying.
Conversely, only 1.7 GB memory is consumed in the
proposed method. This is mainly because the proposed
method loads only part of the IFC model (i.e., external

Fig. 8Memory usage of the test models
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Fig. 9 Comparison between the conventional dynamically loading method and proposed model for the same industry foundation classes file
where 35% data of the same model is loaded for the two methods. a The whole model b Conventional method with 35% data loaded c Our
method with 35% data loaded

building components and specific story components) as
opposed to loading the complete model. With respect to
the three test models, the proposed method reduces the
memory occupied by approximately 70%.

Analysis of dynamically loading speed
In order to analyze the loading speed of the proposed
method, we first compare the display effect of dynamically
loading while using the conventional dynamically load-
ing method and the proposed method for the same IFC
file where the conventional method randomly dynamically
loads IFC model data. Figure 9b and c show the display
results where 35% data of the same model is loaded for
the two methods. The results indicate that the proposed
method presents a good overview of the model while only
loading 35% of the data (or even less). Conversely, the
randomly loading method only shows a small portion of
external building components and does not display the
overview of the model well.
In Table 2, we list the loading time of the test mod-

els. In the table, “Time1(s)” denotes the time of loading
35% data by the proposed method, “Time2(s)” denotes
the time of loading 100% data by the proposed method,
and “Time3(s)” denotes the time of loading 100% data by
the conventional method. Specifically, the time for the
proposed method to load the complete model is almost
identical to that for the conventional method. Here, only
35% of the time (or even less) is required to obtain the
overview of the model by the proposed method, and this
significantly improves user experience.

Analysis of display effect
In order to analyze the display effect of external
component extraction, three models are compared with

Table 2 Loading times of the test models for the conventional
method and proposed method

Model name Time1(s) Time2(s) Time3(s)

M1 12 39 41

M2 20 54 49

M3 11 40 42

the external component extraction algorithm based on
the bounding box and the external component extraction
algorithm according to node classification. The experi-
mental results are shown in Fig. 10. Figure 10a, b and c
denote the results of the extraction algorithm based on
the bounding box. Figure 10d, e and f denote the results
of the external component extraction via the proposed
method.
As shown in Fig. 10, the external component extrac-

tion algorithm based on the bounding box misses several
external windows and doors while extracting the external
components of the three test models. The main rea-
son is described as follows. The bounding box of walls
contains the bounding box of windows and doors, and
thus the windows and doors overlap in two-dimensional
projection and lead to an omission. In the study, the
algorithm is based on the intersection of each node
and component of the node classification. When a com-
ponent is included in another component, the algo-
rithm continues to intersect with the node. Therefore,
the proposed method accurately extracts the external
components.
Figure 11 shows the changes in the number of exter-

nal components extracted from the three models based
on the different partitions. As shown in Fig. 11, the num-
ber of extracted external components decreases when
the number of partitions increases. When the number
of partitions exceeds 30, the number of extracted exter-
nal components tends to be stable because the model
space is already divided into 27,000 cube nodes, and
thus the components cover the nodes more uniformly.
The aforementioned analysis indicates that the number of
external components typically accounts for a small pro-
portion of the total number of components. At the time
of preloading, only the extracted external components
are displayed, and this effectively reduces the amount of
model data when compared to the display of the complete
model data.

Analysis of operation fluency
In order to evaluate the operational fluency, we use the
frames per second (FPS). Under normal circumstances,
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Fig. 10 Comparison of the results of the external component extraction between the bounding box based method and proposed method. aM1
bM2 cM3 dM1 eM2 fM3

the operation is fluent when the frame rate exceeds 30FPS.
A user experiences a certain delay when the frame rate
is lower than 20FPS. It’s unbearable when the frame rate
is less than 10FPS. Therefore, in an ideal case, the frame
rate should be maintained above 20FPS. Table 3 shows
the FPS between the proposed method and the con-
ventional method where “FPS1” denotes the FPS of the
proposed method when only the external components are
shown, “FPS2” denotes the FPS when only the internal
components are shown, and “FPS3” denotes the FPS of the
conventional method.

The proposed method only displays part of the model,
and this reduces the rendering pressure on the client. As
shown in Table 3, the frame rate of M2 is only 3FPS when
the method is not optimized. In the proposed method, the
frame rate increases to 20FPS, and users can clearly view
the model.

Conclusion
The study proposes a method for dynamically loading IFC
models based on SSP. Only the external components of
the display model were loaded in the initial loading of

Fig. 11 Results of extracting external components
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Table 3 FPS of the test models

Model name FPS1 FPS2 FPS3

M1 35 39 4

M2 20 28 3

M3 40 46 5

the model. The model was divided by story information
such that it could be dynamically loaded and displayed
by interactive operation. Additionally, the geometric data
was cached, and this avoided the repeated downloading
of the same geometric data. We implemented the pre-
sented method withWebGL, and this enabled fast loading
of large IFC models on the web browser without any plug-
ins. The experimental results indicated that the proposed
method significantly reduced the memory consumption
in a web browser, and this allowed fast loading of large
IFC models and provided a better interactive experience
for users.
The current implementation of the proposed method

still exhibited a few disadvantages. One of the limitations
is that the algorithm of external component extraction
based on node classification is not sufficiently robust for
non-closed BIM models. For example, mechanical, elec-
trical, and plumbing (MEP) designer models and struc-
tural designer models are typically provided individually,
and this may not explicitly include the architecture mod-
els. Thus, it is difficult to distinguish between external
components and internal ones while only using MEP and
structural models. In the future, we will explore more
effective algorithms of external component extraction and
especially for MEP and structural models. Additionally, a
more effective memory management strategy is also an
important method to improve the performance of dynam-
ically loading IFC models, and this will be explored in a
future study.
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