
Advanced Engineering Informatics 57 (2023) 102099

A
1

Contents lists available at ScienceDirect

Advanced Engineering Informatics

journal homepage: www.elsevier.com/locate/aei

Full length article

Modeling and validating temporal rules with semantic Petri net for digital
twins
Han Liu a,b, Xiaoyu Song c, Ge Gao a,d,∗, Hehua Zhang a,d, Yu-Shen Liu a,d, Ming Gu a,d

a Tsinghua University, Haidian, Beijing, China
b Digital Horizon Technology Co., Ltd., Shenzhen, China
c Portland State University, Portland, OR, United States
d Beijing National Research Center for Information Science and Technology (BNRist), Haidian, Beijing, China

A R T I C L E I N F O

Dataset link: https://github.com/highan911/C
BIMS.SPN

Keywords:
Digital twin
Building information model (BIM)
Petri net
Semantic web
SPARQL

A B S T R A C T

The semantic web has become an important resource of domain knowledge in the construction industry, and
there is a need to model the temporal states and check the transition rules of digital twins in the semantic
web. Related studies have added timestamps to describe an RDF graph that varies in time, but digital twin
applications require a formal representation of the temporal states and transition rules other than simple
timestamps. Related studies also focused on the interaction between temporal and semantic models, but there
are still challenges in the two-way sharing of knowledge in the runtime of the temporal model. In this paper,
the Semantic Petri Net (SPN) is proposed as a method to represent the temporal states and rules in RDF and
SPARQL so that a runnable temporal model can be implemented on a common SPARQL engine, and the state
change rules can be checked with access to the rich domain knowledge provided by the semantic web. An
application case is presented for modeling and simulating the constraints in the process of a construction
project.
1. Introduction

Digital twin is a technology representing real-world elements, envi-
ronments, systems, state changes, and so forth in virtual data models.
With the development and integrated applications of technologies such
as Geographic Information System (GIS), Building Information Model
(BIM), and Internet of Things (IoT), in recent years, the digital twin
technology has become a frontier concept in the intersection field of
information technology and industry. The semantic web is a common
framework for sharing machine-readable knowledge and data based on
the World Wide Web. By integrating the spatio-temporal data with the
knowledge provided by the semantic web, digital twins can be used for
real-time monitoring and coordination and supporting decision-making
and design optimization [1–4].

In the construction industry, the information on building projects
and assets is represented as Resource Description Framework (RDF)
graphs. Human knowledge about the domain is usually represented as
shared ontologies in the semantic web, which explicitly defines the clas-
sification of concepts, datatypes, properties, and relationships involved
in this domain. An ontology is usually represented in the Web Ontology
Language (OWL) [5,6], which supports the formal representation of the
ontology in RDF. The shared ontologies allow computer programs to

∗ Corresponding author at: Tsinghua University, Haidian, Beijing, China.
E-mail addresses: liuhan@digital-h.cn (H. Liu), gaoge@tsinghua.edu.cn (G. Gao).

access the knowledge for implementing various rule-based applications
on the domain data in RDF. Widely used languages for accessing the
knowledge in the semantic web include SPARQL [7] for querying the
linked data, SHACL [8] for checking the conformance of the data, and
SWRL [9] for reasoning on the data.

Specifically, in the construction industry, the languages mentioned
above are used to ensure the conformance of the BIM data with the
standards and regulations [10–14]. While at present, most of the rules
and constraints are for static models that do not change in time. In
related studies like stSPARQL [15], the timestamps and periods are
included in the language for querying and checking the building objects
and properties that vary over time. However, digital twin applications
usually have more complicated temporal states than timestamps and
periods. There are usually rule constraints to determine whether a state
change is allowed. Such state change rules are closely related to the
classifications, properties, and relationships, so there is a need for an
integrated temporal model that can make use of the domain ontologies
and other RDF resources to model the temporal states and processes,
and to represent the rule constraints for state changes.

In other domains, such as the manufacturing industry and informa-
tion technology industry, there are studies on modeling the temporal
vailable online 9 August 2023
474-0346/© 2023 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.aei.2023.102099
Received 16 December 2022; Received in revised form 6 July 2023; Accepted 7 Ju
ly 2023

https://www.elsevier.com/locate/aei
http://www.elsevier.com/locate/aei
https://github.com/highan911/CBIMS.SPN
https://github.com/highan911/CBIMS.SPN
https://github.com/highan911/CBIMS.SPN
https://github.com/highan911/CBIMS.SPN
https://github.com/highan911/CBIMS.SPN
https://github.com/highan911/CBIMS.SPN
https://github.com/highan911/CBIMS.SPN
https://github.com/highan911/CBIMS.SPN
https://github.com/highan911/CBIMS.SPN
https://github.com/highan911/CBIMS.SPN
https://github.com/highan911/CBIMS.SPN
https://github.com/highan911/CBIMS.SPN
https://github.com/highan911/CBIMS.SPN
https://github.com/highan911/CBIMS.SPN
https://github.com/highan911/CBIMS.SPN
https://github.com/highan911/CBIMS.SPN
https://github.com/highan911/CBIMS.SPN
https://github.com/highan911/CBIMS.SPN
https://github.com/highan911/CBIMS.SPN
https://github.com/highan911/CBIMS.SPN
https://github.com/highan911/CBIMS.SPN
https://github.com/highan911/CBIMS.SPN
https://github.com/highan911/CBIMS.SPN
https://github.com/highan911/CBIMS.SPN
https://github.com/highan911/CBIMS.SPN
https://github.com/highan911/CBIMS.SPN
https://github.com/highan911/CBIMS.SPN
https://github.com/highan911/CBIMS.SPN
https://github.com/highan911/CBIMS.SPN
https://github.com/highan911/CBIMS.SPN
https://github.com/highan911/CBIMS.SPN
https://github.com/highan911/CBIMS.SPN
https://github.com/highan911/CBIMS.SPN
https://github.com/highan911/CBIMS.SPN
https://github.com/highan911/CBIMS.SPN
https://github.com/highan911/CBIMS.SPN
https://github.com/highan911/CBIMS.SPN
https://github.com/highan911/CBIMS.SPN
mailto:liuhan@digital-h.cn
mailto:gaoge@tsinghua.edu.cn
https://doi.org/10.1016/j.aei.2023.102099
https://doi.org/10.1016/j.aei.2023.102099
http://crossmark.crossref.org/dialog/?doi=10.1016/j.aei.2023.102099&domain=pdf

Advanced Engineering Informatics 57 (2023) 102099H. Liu et al.
states and state change rules. The Petri Net [16,17] methods are
commonly used for modeling the states and constraints for concurrent
systems. A Petri Net model is clearly defined and runnable on comput-
ers, so it can be used for implementing automatic agents on computers
or for simulating the behavior of real-world concurrent systems. Several
powerful mathematical tools can be applied to the Petri Net models for
analyzing the concurrent systems to validate the features of the system,
such as the accessibility in the state space and the stoppability of the
system [18].

Related studies also focused on the interaction between temporal
models and semantic web applications for enhancing the temporal
modeling and validation with the information provided by the semantic
models. The studies tried to describe the temporal models in ontolo-
gies [19–21], to generate the temporal models according to the RDF
resources [22,23], and to transfer information between the temporal
models and semantic web applications [24,25]. However, there are
still challenges in the two-way knowledge sharing in the runtime of a
temporal model. On the one hand, the transition rules in the temporal
models can be evaluated with access to the vast information from the
RDF graphs. On the other hand, the temporal model structures, rules
and its current state are also in the form of RDF that can be accessed
by other semantic web applications.

In this paper, based on the Petri Net method, the Semantic Petri Net
(SPN) is proposed as a novel temporal modeling method. The temporal
states and transitions are defined in OWL, and the temporal transition
rules are represented in SPARQL statements. As a result, runnable
SPN can be implemented on common SPARQL engines like Apache
Jena [26] and dotNetRDF [27]. It is possible for the SPN to access
the vast semantic information in the RDF graphs based on the domain
ontology such as ifcOWL [28] in the runtime of the temporal model,
and the current state of the SPN is also queryable from a SPARQL
endpoint, which enables the two-way knowledge sharing between the
SPN and other applications on the semantic web.

The main contributions are listed as follows.

• The definition of the SPN structures and rules for modeling tem-
poral states are proposed (see Section 3).

• The compatibility of SPN and the method to search the state space
are discussed (see Section 4).

• An application case is presented for modeling and simulating the
state change rules in the construction industry (see Section 5).

2. Related work

2.1. Modeling and querying the semantic information in the construction
industry

In the domain of construction industry, the physical building ele-
ments are always in spatial relationships with other elements or spaces.
The elements are also usually linked to schedules, processes, or sensor
records in construction projects. So the integration of spatio-temporal
information with semantic data is an interest of research in order
that the semantic queries and inferences can be performed for rule-
based applications. Related studies have been performed in several
disciplines.

IFC (Industry Foundation Classes) [29] is an open standard com-
monly used for buildings and infrastructures. The IFC schema involves
the representation of the building element types and instances, relation-
ships, properties, geometries, materials, and so on. The ifcOWL [28] is
the full representation of IFC schema in OWL, which is used in digital
twin applications such as sensor data integration [30,31], and indoor
tracking and navigation [32,33]. There are studies based on ifcOWL
with simplified semantic graph structure and enriched 3D spatial re-
lationships [14,34,35] for supporting practical semantic queries and
inferences.
2

Rather than setting up a large integrated ontology like ifcOWL,
recent studies have focused on the composition of multiple ontologies
for an application in the construction industry. Each ontology pro-
vides a module for modeling a particular aspect of information [36].
Related studies include the Digital Construction Ontologies [37], the
Brick schema [38], and several ontologies maintained by the Linked
Building Data Community Group (LBD CG) in the World Wide Web
Consortium (W3C). In a construction or asset management project, the
building product types can be defined in an ontology with fine-grained
classification, such as the Building Product Ontology (BPO) [39], the
Building Element Ontology (BEO) [40], and the Distribution Element
Ontology (MEP) [41]. Other aspects of information can be modeled in
different domain ontologies, such as the Building Topology Ontology
(BOT) [31,42] for spatial structure components and relationships, the
Ontology for Property Management (OPM) [43,44] for modeling the
properties in different levels of complexity, and the Ontology for Man-
aging Geometry (OMG) [45] and File Ontology for Geometry formats
(FOG) [46] for geometry representation and exchange.

In addition to semantic models, the extensions on the query lan-
guages are also performed for various applications in the engineering
domain. GeoSPARQL [47] is an Open Geospatial Consortium (OGC)
standard for representing geographic information data and spatial re-
lationships in RDFS/OWL, and for enabling SPARQL to support spatial
relationship queries. BimSPARQL [13] is another extension of SPARQL,
focusing on the queries for 3D geometrical and topological relationships
between the building elements. In the time dimension, stSPARQL [15]
introduces timestamps and periods based on GeoSPARQL, which can
be used for querying the data records that are variable in location
and over time. The triple patterns are extended into quad-patterns in
stSPARQL with the last term as the valid period. Additional predicates
and functions are also defined for comparing the timestamps and
periods.

However, in the management of construction projects and assets,
there are usually more complicated temporal states than just times-
tamps and periods. The construction and installation processes of build-
ing elements are usually composed of a sequence of states. The state
changes are usually with dependencies and constraints, such as re-
sources and machines, approvals, preprocess dependencies, safety con-
ditions, etc. Several related studies involve the modeling of the tem-
poral states and constraints in the construction industry. In the IFC
schema, the processes and dependencies can be modeled using ‘‘IfcPro-
cess’’ and ‘‘IfcControl’’ with assigned building products, resources, and
actors, which is simple and informative for human users. The OPM [43,
44] introduces the ‘‘Level 3 properties’’ with several property states that
may change over time. The historical property state changes can be
recorded and queried with the distinguish of ‘‘current’’ and ‘‘outdated’’
property states. The Digital Construction Ontologies [37] introduces
process modeling involving various activities, such as movement, man-
agement issues, and construction operations of elements. The activities
can be linked to various constraints, such as constraints for the starting
condition, the ending effect, the machine requirement, and the time
duration.

The above-mentioned related studies have proposed various meth-
ods for representing the elements, relationships, and constraints in
construction projects, which provide methodologies and technologies
for the semantic applications on digital twins. As the complexity of
the states and constraints in the system increases, formal methods for
modeling the temporal states and constraints are needed to accurately
describe the system, in order that the process model is both informative
for human users and executable for automatic processing, validation,
and analysis applications.

2.2. Methods for modeling and validating temporal states

In the Information Delivery Manual (IDM) [48,49] standard for
supporting BIM data exchange, the Business Process Modeling Notation

Advanced Engineering Informatics 57 (2023) 102099H. Liu et al.
(BPMN) [50,51] is introduced for modeling the process maps of data
exchange between multiple stakeholders in the construction project.
The BPMN method represents process maps composed of events, activ-
ities, and gateways, and it is commonly used in project management
tasks in various domains. BPMN is suitable for modeling workflows
with multiple participants and is designed to provide human-readable
instructions, including the details of the activities, the conditions on
gateways, and the messages between the participants. However, BPMN
is not designed to implement a model that automatically runs on
computers.

The Finite State Machine (FSM) [52,53] methods are popular for
modeling temporal states and state change conditions in electronic
industry and information technology domains. FSM represents a tem-
poral model with a finite set of states, an input alphabet, and a global
transition function defining the next state on each input. FSM is suitable
for modeling the life cycle of automata in response to various signals
or events, such as string parsers or communication protocols.

The Petri Net methods are also widely used in modeling and ana-
lyzing temporal states, especially for concurrent systems with multiple
participants. In a concurrent system that involves resource allocation
and waiting between multiple threads, there are risks of conflicting
accesses to shared resources, and a deadlock may occur. The Petri Nets
are used to model the concurrent systems for simulating the execution
of the system. Mathematical tools such as state space generation and
place invariant analysis [54–56] can be used in analyzing the system
in order to validate the reliability of the concurrent system against
the deadlocks and other issues. In related studies, the BPMN models
are transformed into Petri Nets, so that the tools for analyzing and
validating the system can be applied [57–60].

Among the variants of the original Petri Net method, the Colored
Petri Nets (CPN) [18,61] is a method with both formality and ease
of use. A Petri Net represents the concurrent system as a graph with
‘‘places’’ to store tokens, ‘‘transitions’’ to consume and generate tokens,
and ‘‘arcs’’ as the connection between places and transitions. CPN is a
type of high-level Petri Net with rules on places, transitions, and arcs.
Each token in a CPN can have an attached data value named a ‘‘color’’,
which must be defined in a finite ‘‘colorset’’. A CPN can be equivalently
unfolded to a low-level Petri Net without colors, which enables the
mathematical tools to analyze the CPN. It is known that the extended
CPN with an infinite colorset is Turing-complete [62].

Real-world engineering projects and digital twin systems usually
have multiple participants, and state changes may occur concurrently.
In this paper, the CPN is chosen as the basis of the research, and the
following part of the paper will try to integrate the CPN method with
the rich semantic information from the engineering domain.

2.3. Interaction between temporal models and semantic web applications

Semantic web technology can provide rich information about do-
main knowledge and engineering instances, and the interrelated in-
formation is essential in supporting the automation of judgments and
processes. Related studies have focused on the interaction between
temporal models and RDF resources, in order that the knowledge in
the semantic web can be accessed to enhance the ability of temporal
models. The studies can be classified into the following topics.

Describing the static structure of a temporal model using an
ontology. In such studies, ontologies are established to describe the
components and structures in the temporal models. The behavior of the
temporal models can also be translated into the axioms in the ontolo-
gies for supporting reasoning and validation. The described temporal
models include FSM [19], BPMN [20,63,64] and Petri Nets [21,65,
66]. In such studies, the contents of the ontologies are mainly about
the temporal models themselves, but not much domain knowledge is
included.

Knowledge-based generation of temporal models. Based on the
3

knowledge graph of a specific domain, a temporal model is generated
to perform as a runnable agent for implementing a particular task such
as a classifier [22] or a workflow simulator [23,67]. In such studies,
domain knowledge is introduced in initializing the temporal models but
is no longer referred to in the runtime.

Accessing and querying the temporal states from semantic
web applications. In Knowledge-driven FSM [25] and DARPA Agent
Markup Language (DAML) [68], both the static structure and the
dynamic state changes of a temporal model are written into the RDF
graph. In such studies, the rules to drive the temporal model are
still disjoint with the RDF graph. But such methods can be used to
support decision-making in knowledge-based applications by querying
the current state of the temporal model or by querying the candidate
adjacent states from the RDF graph.

Involving domain knowledge in the runtime of the temporal
models. The Petri Nets over Ontological Graphs (PNOG) [24] allows
the tokens to be with a hierarchical classification system. The classi-
fication of the tokens is represented in an RDF graph, which can be
accessed in the runtime of the Petri Net. The synonyms and hyponyms
rules among the tokens are also supported in the PNOG. However, only
the classifications of the tokens are supported, but the properties and
relationships between the tokens are not included in the model.

A more detailed literature review of research on knowledge sharing
between temporal models and semantic models can be found in the
Refs. [69].

Compared with the previous studies, the motivation in this paper
is to integrate the temporal model with the semantic model, in which
the enriched semantic information can be used in validating the state
change rules for driving the temporal model, and the temporal states
are also in the form of RDF that is accessible to other semantic web
applications. The idea is to implement a runnable Petri Net based on
a semantic engine by defining the structure of the Petri Net in OWL
and representing the state change rules in SPARQL. Since the proposed
temporal model is established based on semantic technologies, the two-
way sharing of knowledge between domain ontologies and temporal
models in the runtime can be realized. The SPARQL statements can
be used inside the temporal model as state change rules concerning
domain knowledge, and also outside the temporal model as domain
queries concerning current temporal states.

3. The semantic Petri net (SPN)

The definition of SPN is provided in Section 3.1. The representation
of SPN structure components and rules in OWL and SPARQL are shown
in Section 3.2. The implementation of the SPN toolkit is shown in
Section 3.3.

3.1. The definition of SPN

The definition of SPN inherits from the CPN, with an external RDF
graph 𝐖 providing the relationships between the Petri Net structures
and contents.

The SPN is defined as a tuple

𝐒 = ⟨Σ,𝐏,𝐓,𝐀,𝐍,𝐂,𝐆,𝐄, 𝐈;𝐖⟩. (1)

Σ is the ‘‘colorset’’ containing the token colors allowed in the Petri
Net. In SPN, Σ is a finite set of RDF terms (including literals and URIs).

𝐏, 𝐓, 𝐀, 𝐍 are about the structure of an SPN, and 𝐂, 𝐆, 𝐄, 𝐈 are
about the rules in the SPN.

• 𝐏 is the set of places.
• 𝐓 is the set of transitions.
• 𝐀 is the set of arcs.
• 𝐍 is the assignment of each arc to link one place and one transi-

tion.

• 𝐂 is the assignment of a subset of allowed colors to each place.

Advanced Engineering Informatics 57 (2023) 102099H. Liu et al.

a
b
r
a
p
t
e

a
S
o
A
‘
R
g

Fig. 1. An example SPN for fetching the ‘‘IfcDoor’’ nodes and dispatching by ‘‘overallHeight’’.
• 𝐆 is the set of guard rules, which assigns each transition with a
rule that returns a boolean value, deciding whether this transition
is enabled.

• 𝐄 is the set of arc expressions, which assigns each arc with
an expression that returns a multiset of tokens, deciding which
tokens to consume (for place-to-transition arcs) or to generate (for
transition-to-place arcs).

• 𝐈 is the assignment of an initial multiset of tokens to each place.

The unit of the behavior of CPN is a ‘‘binding’’. A transition has
set of arguments shared in the guard rules and arc expressions. A

inding is an assignment of values to the arguments, so that the guard
ules are evaluated to return a boolean value, and the arc expressions
re evaluated to return a multiset of tokens to consume in the input
laces or to generate in the output places. A transition is enabled when
he guard rule returns true and there are enough tokens to consume in
very input place. The SPN inherits the binding behavior of the CPN.

Based on the definition of the SPN, the SPN structure components
re defined in OWL, and the SPN rules are represented in SPARQL. So
PN structures and rules can be saved and exchanged in several formats
f the RDF data, and can be loaded and run on RDF engines such as
pache Jena [26] and dotNetRDF [27]. In the SPARQL grammar, an

‘ASK’’ query returns a boolean value, and a ‘‘SELECT’’ query returns
DF tokens, so the two types of SPARQL statements can be used in the
4

uard rules and the arc expressions, respectively.
Fig. 1 provides an example SPN. The ‘‘IfcDoor’’ nodes are fetched
from the RDF model and put into the place ‘‘P0’’. Depending on the
‘‘overallHeight’’ attribute of each node, either transition ‘‘T1’’ or ‘‘T2’’
is fired to dispatch the node to the place ‘‘P1’’ or ‘‘P2’’, respectively.
In this example case, the guard rules on the transitions are evaluated
for each input ‘‘IfcDoor’’ node to accept or reject the node to trigger
the transition. This mechanism is useful in real-world scenarios with
the guard rules composed according to the state change constraints, so
that whether an input token is allowed to trigger the state change can
be automatically checked.

Fig. 1(a) is the diagrammatic representation of the example SPN.
The places are drawn as circles, the transitions are drawn as boxes, the
arcs are drawn as directed arrows, and the tokens are drawn as little
dots contained in the places. Fig. 1(b) is its representation in the Terse
RDF Triple Language (TTL) [70] format. The left column of Fig. 1(b) is
about the SPN structure components.

• Rows 1 to 6 are about two transitions. Each transition has an
argument definition, and a guard rule to decide whether this
transition is enabled.

• Rows 7 to 11 are about three places, in which the place ‘‘P0’’ is
assigned a color rule and an initializing rule.

• Rows 12 to 27 are about four arcs. Each arc links one place and
one transition, and has an argument definition.

Advanced Engineering Informatics 57 (2023) 102099H. Liu et al.

d

a
s
i
‘
‘
t
r
t
t
e
a
t
e

3

g
a
t
a

n

t
e

Table 1
The definition of SPN structure components.

Class Property Range Cardinality Description

spn:Transition

spn:guardRule spn:Rule 0:1 A boolean rule deciding
whether the transition is
enabled.

spn:hasArg spn:ArgDef 1:? Definition of arguments
used in guard rules and
arc expressions.

spn:Place

ldp:contains rdfs:Resource 0:? Contained tokens.
spn:colorRule spn:Rule 0:1 A boolean rule deciding

whether a token is allowed
in the place.

spn:initRule spn:Rule 0:1 A rule assigning initial
tokens.

spn:Arc

spn:relPlace spn:Place 1:1 Related place.
spn:relTransition spn:Transition 1:1 Related transition.
spn:arcExpr spn:Rule 0:1 An arc expression deciding

which tokens to consume
or to generate.

spn:hasArg spn:ArgDef 1:? Definition of arguments,
must be a subset of the
arguments of the related
transition.
The right column of Fig. 1(b) is about the rules and arguments to
rive the SPN.

• Rows 28 to 30 are about a color rule for the place ‘‘P0’’, which has
an ‘‘ASK’’ rule in SPARQL that decides whether a token is allowed
to be put into the place.

• Rows 31 to 33 are about an initializing rule for the place ‘‘P0’’,
which has a ‘‘SELECT’’ rule in SPARQL to fetch the tokens from
an external RDF graph into the place on initializing the Petri Net.

• Rows 34 to 43 are about two guard rules for transitions ‘‘T1’’ and
‘‘T2’’, respectively. Each guard rule has an ‘‘ASK’’ rule in SPARQL
that decides whether the transition is enabled by a token when
the token is assigned to the input argument of the transition.

• Rows 44 to 49 are about two argument definitions. Each argu-
ment has a name and a required argument type. The arguments
are shared in the guard rules and the arc expressions.

Before the example SPN is initialized, two RDF graphs are loaded in
graph repository. One is the RDF graph for SPN structures and rules

hown in Fig. 1(b), and another is the RDF graph about the components
n a building model. On initializing the SPN, the tokens of the type
‘ifcowl:IfcDoor’’ are fetched from the building model into the place
‘P0’’ according to the initializing rule. When the SPN starts to execute,
he system keeps accepting argument bindings and evaluating guard
ules for each transition. When a transition is enabled, it may be ‘‘fired’’
o consume some tokens from the input places, and to generate some
okens to the output places. The guard rules of the two transitions are
valuated as filters to dispatch the tokens according to the value of the
ttribute ‘‘ifcowl:overallHeight_IfcDoor’’. Finally, the system may come
o an end state when no more available bindings in the system can
nable the transition.

.2. Representation of SPN structures and rules in OWL and SPARQL

The components of the SPN structure are represented as an RDF
raph, and the rules to drive the SPN are written in SPARQL queries and
ttached to the SPN structure nodes. The SPN ontology is established
o define the classes and properties for representing the SPN structures
nd rules, with the namespace ‘‘spn:’’.

The classes and properties for representing SPN structure compo-
ents are listed in Table 1.
Transitions. A transition is of the class ‘‘spn:Transition’’. A transi-

ion may have several arguments with the attribute ‘‘spn:hasArg’’, and
5

ach argument is an ‘‘spn:ArgDef’’ node with an argument name and
a type definition on the argument. The arguments are shared in the
guard rule of the transition, and the arc expressions of the input and
output arcs of the transition. A transition may have a guard rule by
‘‘spn:guardRule’’, for checking whether the transition is enabled when
a binding is provided. If the guard rule is empty, the transition is always
enabled by default as long as enough input arguments are provided and
enough tokens are in the input places.

Places. The SPN places are implemented based on the Linked
Data Platform (LDP) standard [71]. LDP is recommended by W3C
for maintaining dynamic relationships in linked data, with the defini-
tion of data node containers and the HTTP requests for manipulating
the dynamic linked data. The ‘‘spn:Place’’ is defined as a subclass of
‘‘ldp:Container’’, so the contained tokens can be linked to the place with
‘‘ldp:contains’’. The LDP standard defines the range of ‘‘ldp:contains’’
as ‘‘rdfs:Resource’’, which means that any RDF term (including literals
and URIs) can be placed into the container as a token. A place may
have a color rule with ‘‘spn:colorRule’’, which returns a boolean value
deciding whether a token is allowed in the place. A place may have an
init rule with the relationship ‘‘spn:initRule’’, which defines a rule to
fetch the initial tokens from another RDF graph.

Arcs. The ‘‘spn:Arc’’ is the abstract superclass for arcs, which
must relate one place with ‘‘spn:relPlace’’ and one transition with
‘‘spn:relTransition’’. The ‘‘spn:Arc’’ has two subclasses:

• ‘‘spn:ArcT2P’’ is for arcs pointing from a transition to a place;
• ‘‘spn:ArcP2T’’ is for arcs pointing from a place to a transition.

An arc must have at least one argument with ‘‘spn:hasArg’’, and all
arguments must also be assigned to the related transition. An arc
may have an arc expression by ‘‘spn:arcExpr’’, which is calculated for
obtaining a multiset of tokens according to the arguments. When the
arc expression is null, it directly passes the tokens that are assigned to
the arguments.

The SPN rules are closely related to the SPN structure components
and are also defined as rule nodes in the SPN ontology. An SPN
rule is formed as a tree structure in the RDF graph and is attached
to an SPN component node. The SPN rule structure allows linking
several relatively small SPARQL queries together to form a compound
rule, which is helpful in debugging and maintenance in the software
implementation of the SPN.

The classes and properties for representing SPN rules are listed in
Table 2. The ‘‘spn:Rule’’ is the abstract superclass of all SPN rule nodes,
which has the following subclasses:
• The ‘‘spn:SPARQLRule’’ contains a SPARQL statement.

Advanced Engineering Informatics 57 (2023) 102099H. Liu et al.

n
‘
r
t

t
p
a
i
t

3

F

m
t

L
m
a

Table 2
The definition of SPN rule components.

Class Property Range Cardinality Description

spn:SPARQLRule spn:hasSPARQL xsd:string 1:1 The SPARQL statement of the
rule.

spn:ConstantRule spn:hasValue rdfs:Resource 1:1 The constant value of the
rule.

spn:ArgRule spn:hasArg spn:ArgDef 1:1 The argument to be returned
by the rule.

spn:CompoundRule
spn:operator xsd:string 1:1 The logical operator. The

allowed values are AND, OR,
XOR, and NOT.

spn:subRule spn:Rule 1:? The sub-rules connected by
operator.

spn:ConditionRule

spn:if spn:Rule 1:1 The ‘‘if’’ condition rule,
which must return a boolean
value.

spn:then spn:Rule 1:1 The ‘‘then’’ condition rule
when ‘‘if’’ condition returns
true.

spn:else spn:Rule 1:1 The ‘‘else’’ condition rule
when ‘‘if’’ condition returns
false.

spn:ArgDef spn:argName xsd:string 1:1 The argument name.
spn:argType rdfs:Class 0:? Allowed argument types in a

binding.
t
h

W
t
t
f

m
f

• The ‘‘spn:ConstantRule’’ contains a constant token or a multiset
of tokens. Each token can be a URI or a literal value.

• The ‘‘spn:ArgRule’’ contains an argument definition. The rule
returns the value that bound on the argument.

• The ‘‘spn:CompoundRule’’ contains multiple sub-rules connected
by a logical operator (AND, OR, XOR, or NOT), and each sub-
rule returns a boolean value. Specifically, there can be only one
sub-rule with a NOT operator.

• The ‘‘spn:ConditionRule’’ contains an ‘‘if’’ sub-rule that returns a
boolean value, and with the true and false conditions returned by
the ‘‘if’’ sub-rule, the ‘‘then’’ and ‘‘else’’ sub-rules are evaluated,
respectively.

The rule nodes compose a rule tree structure, in which each leaf
ode should be one of ‘‘spn:SPARQLRule’’, ‘‘spn: ArgRule’’ and

‘spn:ConstantRule’’. The SPARQL statements can be ‘‘ASK’’ queries
eturning a boolean value, or ‘‘SELECT’’ queries returning the queried
okens from the RDF graph.

The ‘‘spn:ArgDef’’ is the class for defining the name and allowed
ypes of an argument, which can be assigned to the ‘‘spn:hasArg’’
roperty of transitions and arcs. The name of the argument is used
s the input variable in the SPARQL statements. The argument type
s allowed to be null, which indicates that the argument accepts any
ype of tokens.

.3. The implementation of the SPN tool

The software structure of the implemented SPN tool is shown in
ig. 2. The descriptions of the modules are listed as follows.
RDF storage. In this paper, the dotNetRDF [27] toolkit is used to

aintain the domain RDF graphs. The following RDF graphs are stored
ogether in a repository supporting SPARQL queries.

• SPN graph: Containing the SPN structure components and the SPN
rules.

• IFC schema graph: Containing an ontology for the IFC schema.
• IFC instance graph: Containing the IFC instances with properties

and relationships.

LDP controller. The LDP controller is developed based on the
inked Data Platform specification [71], which maintains the contain-
ent of tokens in the LDP containers and has the operations to read

nd manipulate the containers. For the SPN places, an extension is
6

added to support the multiplication of the same token in a place. If an
identical token is stored multiple times in a place, an additional prop-
erty ‘‘spn:multi_i’’ (in which ‘‘i’’ is an integer greater than 1) is added
between the place and the token in addition to the ‘‘ldp:contains’’.

SPARQL engine. The SPARQL engine module queries the data in
all the RDF graphs in the RDF storage, supporting the SPN runner to
access the schema and instance data and check the rule constraints. The
SPARQL engine module is based on the functions of the dotNetRDF
toolkit [27]. On initializing the SPN and in the runtime of the SPN,
the SPN runner keeps sending the SPARQL query strings, the current
tokens, and the argument bindings to the SPARQL engine module. The
SPARQL engine module injects the tokens and the argument bindings
into the SPARQL query strings with ‘‘BIND’’ or ‘‘VALUES’’ clauses. Then
the module executes the query to get the results to drive the SPN.

SPN runner. The SPN runner is the core module for the execution of
he SPN. Supported by the modules mentioned above, the SPN runner
as the following functions to run the simulation of the SPN.

• Initializing: Performing the initializing rule of each place to fetch
RDF tokens into the places.

• Transition registration: Registering the transitions to the runner
so they can be automatically triggered in the main loop of the
runner. The user can choose to register all transitions or keep part
of the transitions under the manual control of the user.

• Binding finder: Finding the enabled bindings for all transitions as
candidates for firing the transitions and refreshing the candidates
when the state of the system is changed.

ith the functions mentioned above, The main loop keeps finding
he bindings, checking the guard rules, and triggering the registered
ransitions. The main loop stops when no more enabled bindings are
ound in the system.
Interface. The interface has various connections between the SPN

odel and the external data, applications, and users. The following
unctions are included in the interface:

• BIM loader: Loading the BIM data model in an original format
(such as IFC) and extracting instances, properties, and relation-
ships from the original data.

• Events: Event handlers can be added to the transitions for events
like ‘‘triggered’’ or ‘‘binding rejected’’. Such event handlers can
be used for interaction with external applications.

Advanced Engineering Informatics 57 (2023) 102099H. Liu et al.

m
t
t
m
T
a
s
s

4

r
d
m
S
a
s

4

N
a
a
c
m

l
c
S
P
P
a

a
l
C
t
f
b

Fig. 2. The software structure of the SPN tool.
• User control methods: Public methods are used for manual control
of the SPN, such as assigning a user-defined global argument and
triggering a transition with a user-specified binding.

In the definition of Petri Net, each place contains an unordered
ultiset of tokens, and the transitions may be fired concurrently, so

he SPN runner involves random behaviors. The different orders of
riggering the transitions and the random selection of tokens when
ultiple tokens can enable the guard rule may lead to different results.
he user may provide a sequence of bindings as an input for the SPN,
nd the SPN runner may also automatically run to search for a random
equence of states of the system. All the possible states form the ‘‘state
pace’’ of the Petri Net [18].

. Discussions on analyzing the SPN

In this section, the issues for supporting the analysis of concur-
ent systems modeled in the SPN are discussed. In Section 4.1, the
ownward compatibility of SPN is discussed to ensure that the existing
ethods for analyzing low-level Petri Nets can also be applied to the

PN. In Section 4.2, the method to find the adjacent states according to
current state in the state space of the SPN is discussed for supporting

imulation and analysis in the state space of the SPN.

.1. The downward compatibility of SPN

Compared with the variant methods, the original low-level Petri
et has only non-colored tokens and simple number constraints on the
rcs. But a low-level Petri Net is mathematically simple and easy to be
nalyzed. The high-level Petri Nets (such as the CPN [18]) have more
omplex tokens and rules but are usually more friendly to engineers in
odeling a real concurrent system.

The high-level Petri Nets keep the downward compatibility with the
ow-level Petri Nets, which means that a high-level Petri Net like CPN
an be converted to an equivalent low-level Petri Net with ‘‘unfolding’’.
uch equivalence is essential for ensuring that the complex high-level
etri Nets do not exceed the scope of the capability of the low-level
etri Nets, so that the methods for analyzing low-level Petri Nets can
lso be applied to the high-level Petri Nets.

In CPN, the tokens are unrelated, and the rules are static, so the
ctions in a far-away transition do not change the behavior of a
ocal transition, which is essential for analyzing concurrent systems.
ompared with the CPN, the SPN involves an RDF graph for providing
he relationships between the tokens, and SPARQL rules are introduced
or representing domain constraints. Due to the latent relationships
7

etween the tokens from the domain RDF graph, in SPN, the behavior
Fig. 3. Examples of unfolding CPN and SPN.

of a local transition may be changed by the actions in a far-away
transition. The benefit of introducing semantic relationships is that the
structure of the SPN can be simplified without explicitly representing
the coupled states. Nevertheless, the discussion on downward compat-
ibility is necessary for ensuring that SPN does not exceed the scope of
the capability of the CPN, and that the analysis methods for low-level
Petri Nets are still applicable to SPN.

The conversion of the SPN to an equivalent CPN can be inspired by
unfolding a CPN to lower-level Petri Nets. Fig. 3(a) shows an example
unfolding of a CPN. A colored place is represented as multiple non-
colored places corresponding to each allowed color of this place. A tran-
sition with conditions can be represented as multiple sub-transitions
dealing with each condition, which can always be established by listing
all possible bindings due to the ‘‘finite colorset’’.

In this section, a three-step unfolding process for SPN is proposed
for obtaining an equivalent CPN, as shown in Fig. 3(b).

Advanced Engineering Informatics 57 (2023) 102099H. Liu et al.

m

𝑛
𝐛
e

𝑓

i
t

Step 1: Putting all variables of the domain RDF graph inside
the SPN. This step ensures a ‘‘constant domain RDF graph’’ condition,
in which the latent connections in the domain RDF graph are not
changeable by external editing operations. This step can be done by
representing all variable items in the domain RDF graph as LDP con-
tainers, and representing the editing operations as transitions connected
to the containers, since the LDP method is recommended by W3C for
maintaining variable members and relationships in an RDF graph [71].

Step 2: Splitting latent semantic connections into explicit arcs.
The SPARQL rules in SPN may concern latent connected remote tokens.
In the ‘‘constant domain RDF graph’’ condition, for each SPARQL rule,
a finite set of concerned remote tokens can be listed, and then a finite
set of concerned remote places which may contain such tokens can be
listed. As a result, the latent semantic connections can be split into
explicit arcs. For each remote place, a pair of arcs are added to fetch the
remote tokens and send them back to keep the remote place unchanged.

Step 3: Implementing SPARQL rules in the CPN. Similar to the
unfolding of CPN, due to the ‘‘finite colorset’’, the SPARQL rules can
always be equivalently implemented in CPN, at least by listing all
possible conditions of the bindings.

The three-step unfolding process shows the existence of an equiv-
alent CPN for an SPN, which ensures that the analysis methods for
CPN can also be applied to SPN. However, the unfolding is usually not
necessarily performed before simulating or analyzing a high-level Petri
Net. Since a low-level Petri Net has simple rules, the number of places
and transitions may be much larger to represent an equivalent high-
level Petri Net. There are also related studies about simplified unfolding
methods [72] rather than listing the bindings, which is out of the scope
of this paper. So in the rest of this section, the method of directly
finding the adjacent states in the state space of the SPN is discussed.

4.2. Finding the adjacent states in the state space of the SPN

4.2.1. The reachability graph of Petri nets
The state space of a Petri Net is the representation of all possible

states and state changes of the Petri Net. The state space is represented
as a directed graph 𝐑 = ⟨𝐌,𝐘⟩ named a reachability graph or a
coverage graph, in which each node 𝐦 ∈ 𝐌 is named a ‘‘marking’’,
and each edge 𝐲 ∈ 𝐘 is named a ‘‘step’’. A marking 𝐦 is a state of
the whole Petri Net, which records the number of different tokens in
every place at this moment. A step is an edge in the reachability graph.
By triggering a transition 𝑡 with the arguments in a binding 𝐛, the

arking 𝐦 is changed to a new marking 𝐦′, which is recorded as a step
𝐲 = ⟨𝐦, ⟨𝑡,𝐛⟩,𝐦′

⟩ in the reachability graph. The pair ⟨𝑡,𝐛⟩ is named a
‘‘binding element’’, which is an assignment of binding arguments to a
transition.

The state space analysis is a powerful tool in analyzing the Petri Net.
The reachability graph can be used to validate the features of the Petri
Net [18], such as the reachability between two markings, the existence
of a deadlock, and the ability to return to a home marking, etc.

The core process in state space analysis is to find the steps to change
a current marking to the adjacent markings. Each step corresponds
to an ‘‘enabled binding element’’, which is an assignment of binding
arguments that enables a transition, i.e., the guard rule is satisfied, and
the input places have sufficient tokens to be consumed. The reachability
graph can be generated by iteratively searching for the enabled binding
elements. The found binding elements are also useful in the simula-
tion of the SPN for providing the simulator with a list of candidate
transitions to be triggered next.

A straightforward method to find the enabled bindings on a transi-
tion can be described as follows.

(a) For each argument of the transition, get a finite token set ac-
cording to the range of the argument.

(b) List all possible combinations of the arguments, which forms an
original set of candidate bindings.
8

(c) Check the guard rule for obtaining a subset of the bindings with
a TRUE result.

(d) For each binding, evaluate the arc expression on each input
arc of the transition, for obtaining a multiset of tokens to be
consumed.

(e) Remove the binding if any of the corresponding input places
have insufficient tokens to be consumed.

This straightforward method has a shortcoming in that the number
of original bindings may be too large, and the checking through the
input arcs and places may also be time-consuming. In related research
on CPN, a method is proposed to efficiently find the binding elements
by inferring the argument assignments according to the tokens in the
input places, and to get the combination of argument assignments by
matching the patterns between several arc expressions [73].

For SPN, since the SPARQL engine is powerful in finding the argu-
ment patterns from the RDF graph, it is possible to find the bindings by
generating and performing SPARQL queries (see Section 4.2.2). While
in SPN, the rules may be in a condition tree composed of ‘‘if-then-else’’
rules, which needs to be considered in composing the query to find the
bindings (see Section 4.2.3).

4.2.2. Finding the enabled bindings for the SPN transitions
In SPN, each argument may have a type definition, which corre-

sponds to a clause in a SPARQL query statement for finding a collection
of tokens. By composing a query with the type definitions, an original
binding set can be found in the RDF graph. Considering that the guard
rules and arc expressions are also in SPARQL, the main idea in this
section is to add more constraints to the query so that the number of
the candidate bindings can be reduced.

In this section, Algorithm 1 is proposed for finding the enabled bind-
ings for an SPN transition by performing integrated SPARQL queries.

The guard rule is usually an ‘‘ASK’’ statement, which returns a
boolean result for a binding of the arguments. In row 4 of Algorithm 1,
the guard rule is converted from the ‘‘ASK’’ statement into a ‘‘SELECT’’
statement, and the rule segment ℎ0 is composed by connecting the
guard rule with the definition rules of the arguments, which is used for
ensuring a binding that conforms to the guard rule and the argument
types. In row 4, the symbols ‘‘+’’ and ‘‘∑’’ represents the connection
of rules, which can be performed either by joining the SPARQL clauses
into one SPARQL statement, or by executing the queries in sequence
with substituting the previous results.

For the arc expressions, the idea is to find the ‘‘inverse expression’’.
An arc expression is a function that maps a binding to a multiset of
tokens to be consumed in the input place. An inverse expression for an
arc expression is a function that maps the content of the input place to
a set of possible bindings.

An arc expression 𝑓 and its inverse expression ℎ can be defined as
the mappings shown in Eqs. (2) and (3), respectively. In the definitions,
𝐜 = {𝑐1,… , 𝑐

|𝐜|} is a color set with different tokens, ⟨𝑐1 ∶ 𝑛1 ,… , 𝑐
|𝐜| ∶

|𝐜|⟩ is a multiset which records the number 𝑛𝑖 of each token 𝑐𝑖, and
= ⟨𝑎1 ∶ 𝑣1 ,… , 𝑎

|𝐛| ∶ 𝑣
|𝐛|⟩ is a binding which assigns a value 𝑣𝑖 to

ach argument 𝑎𝑖.

∶ 𝐛 = ⟨𝑎1 ∶ 𝑣1 ,… , 𝑎
|𝐛| ∶ 𝑣

|𝐛|⟩

→ 𝐬 = ⟨𝑐1 ∶ 𝑛1 ,… , 𝑐
|𝐜| ∶ 𝑛

|𝐜|⟩ (2)
ℎ ∶ 𝐬 = ⟨𝑐1 ∶ 𝑛1 ,… , 𝑐

|𝐜| ∶ 𝑛
|𝐜|⟩

→ 𝐁 = {⟨𝑎1 ∶ 𝑣1 ,… , 𝑎
|𝐛| ∶ 𝑣

|𝐛|⟩,…} (3)

If an arc expression is in a simple (but commonly used) form, the
nverse expression can be automatically generated. In our implementa-
ion, the following cases are handled.

(a) If an arc expression returns a constant value irrelevant to the
arguments, it cannot provide any constraint for the argument
assignments. Such expression is ignored so that the inverse ex-

pression only keeps the basic type constraints for the arguments.

Advanced Engineering Informatics 57 (2023) 102099H. Liu et al.

o
t
i
h
c

S

f

s

t
c
b
b
p
t
c
s
c
E
‘

s
o
i
t
T
S
t
s
t
r
b

Algorithm 1 FindEnabledBindings
Input: transition 𝑡, marking 𝐦, RDF graph 𝐖
1: 𝑔 ← GuardRuleOf(𝑡)
2: 𝐞 ← InputArcsOf(𝑡)
3: 𝐚 ← ArgumentsOf(𝑡)
4: ℎ0 ← ToSelectRule(𝑔) +∑

𝑎∈𝐚 DefinitionRuleOf(𝑎)
5: 𝐡 ← ∅
6: 𝐞skip ← ∅
7: for arc 𝑒 ∈ 𝐞 do
8: 𝑓 ← ArcExpressionOf(𝑒)
9: ℎ ← TryInverse(𝑓)

10: if ℎ ≠ NULL then
11: 𝐡 ← 𝐡 ∪ {ℎ}
12: else
13: 𝐞skip ← 𝐞skip ∪ {𝑒}
14: end if
15: end for
16: bindings 𝐁 ← ∅
17: for rule ℎ ∈ 𝐡 do
18: 𝐁 ← 𝐁 ∪ ProcessQuery(ℎ0 + ℎ,𝐦,𝐖)
19: end for
20: for arc 𝑒 ∈ 𝐞skip do
21: 𝑓 ← ArcExpressionOf(𝑒)
22: 𝑝 ← PlaceOf(𝑒)
23: for binding 𝐛 ∈ 𝐁 do
24: multiset 𝐬 ← 𝑓 (𝐛)
25: if NOT 𝐬 ⊆ 𝐦(𝑝) then
26: 𝐁 ← 𝐁 − {𝐛}
27: end if
28: end for
29: end for
Output: enabled bindings 𝐁

(b) If an arc expression is with a single argument, and returns
the argument itself (or a collection of itself), then the inverse
expression is a query for this token in the input place. When a
token matches the argument type, and the number of the token
in the place is greater than the multiplier, then this token is
returned as a possible assignment to the argument.

(c) If an arc expression is with several arguments and returns a mul-
tiset of the arguments, then for each argument, a partial inverse
expression is generated according to case (b). The full inverse
expression is the connection of the partial inverse expressions. If
the arc expression is a SPARQL rule, the partial clauses can be
joined to form the SPARQL statement of the inverse expression.

(d) If an arc expression does not directly return the input arguments,
but returns the tokens in the place that are linked with the
input arguments, in the inverse expression, the links are used to
find the possible assignments of the arguments according to the
tokens in the place. Such an arc expression is usually a SPARQL
rule, and the clauses representing the links can be copied into
the SPARQL statement of the inverse expression.

In Algorithm 1, from row 7 to row 15, the loop is to find the inverse
f the arc expression on each input arc. The function ‘‘TryInverse’’ is
he sub-process for finding the inverse expression for an arc expression,
n which the above-mentioned cases for finding inverse expressions are
andled. Then from row 17 to row 19, each found inverse expression is
onnected with the rule ℎ0 to form a query, and the query is processed

on the current marking 𝐦 to obtain a set of candidate bindings. If the
SPARQL statement of an arc expression is complex that the inverse
expression cannot be automatically generated yet, it can be skipped for
the moment, and the straightforward method to check the sufficiency
of tokens can be performed later, as shown in the loop from row 20 to
9

row 29.
4.2.3. Finding the inverse of a rule with condition tree
In SPN, there are rules in a condition tree structure. In an arc

expression with conditions, the sub-rule assigned to the ‘‘if’’ branch
returns a boolean result for a binding of the arguments. According
to the boolean result, the ‘‘then’’ branch and the ‘‘else’’ branch are
evaluated, respectively. The condition tree can be with several layers,
and finally, each leaf node returns a multiset of tokens.

The condition tree can be split into several paths from the root to
the leaf nodes. On each path, the branch nodes are several boolean rule
nodes, and the final leaf node will return a multiset of tokens when all
the previous boolean nodes return ‘‘TRUE’’. In this way, let 𝑓 be an arc
expression with a condition tree structure, and it can be split into a set
of rule pairs, as shown in Eq. (4), in which ‘‘𝛼𝑖’’s are the conjunction of
all branch rule nodes, and ‘‘𝛽𝑖’’s are the corresponding leaf nodes.

plit(𝑓) = {⟨𝛼1, 𝛽1⟩,… , ⟨𝛼𝑘, 𝛽𝑘⟩} (4)

On each split path, with an input binding 𝐛, the part of the function
can be represented as ‘‘𝑓𝑖’’ in Eq. (5).

𝑓𝑖(𝐛) =
{

𝛽𝑖(𝐛) when 𝛼𝑖(𝐛) = TRUE

∅ when 𝛼𝑖(𝐛) = FALSE
(5)

The conditions {𝛼1,… , 𝛼𝑘} are exclusive to each other, and for each
binding 𝐛, at most one of the ‘‘𝑓𝑖’’s returns a non-empty multiset. As a
result, the function 𝑓 can be defined as the union of the function ‘‘𝑓𝑖’’s.

In finding the inverse of 𝑓 , the inverses of the leaf rules are found
irst. Let 𝜔𝑖 be the inverse of 𝛽𝑖, then the inverse of 𝑓𝑖 is the function
ℎ𝑖 in Eq. (6).

ℎ𝑖(𝐬) = {𝐛 ∣ 𝐛 ∈ 𝜔𝑖(𝐬) ∧ 𝛼𝑖(𝐛) = TRUE} (6)

Function ℎ𝑖 calculates a set of bindings from a multiset of tokens
𝐬 (which is the content of the input place) and keeps a subset of the
bindings which can make 𝛼𝑖 return ‘‘TRUE’’.

Since the ‘‘𝛼𝑖’’s are exclusive, the results of ‘‘ℎ𝑖(𝐬)’’s are also exclu-
ive. So let ℎ be the inverse of 𝑓 , it returns the union of the results of

‘‘ℎ𝑖’’s, i.e. ℎ(𝐬) = ⋃

𝑖 ℎ𝑖(𝐬).
In composing each ℎ𝑖 in SPN rule nodes, it is considered that in

the corresponding rule pair ⟨𝛼𝑖, 𝛽𝑖⟩ for composing 𝑓𝑖, each rule node in
he path of 𝛼𝑖 is usually an ‘‘ASK’’ statement in SPARQL (or the logical
ombination of several ‘‘ASK’’ statements). Each rule node in 𝛼𝑖 uses a
inding as input and returns a boolean result as a filter for the input
inding. According to Eq. (6), in composing ℎ𝑖, the function 𝜔𝑖 is first
erformed to find a set of bindings, then the filters are evaluated later
o keep a subset of the bindings. So the ℎ𝑖 can also be composed as a
hain of rule nodes, which starts with the 𝜔𝑖 node (usually a ‘‘SELECT’’
tatement) for obtaining a set of bindings, and then followed by a
hain of nodes in the corresponding 𝛼𝑖 rule for filtering the bindings.
ach node in an 𝛼𝑖 rule is converted from an ‘‘ASK’’ statement into a

‘SELECT’’ statement.
Fig. 4 shows an example of composing the inverse of an arc expres-

ion 𝑓 with condition tree structure, in which the arrows represent the
rder to check the rule nodes. The expression 𝑓 is presented in Fig. 4(a),
n which the 𝛿1 and 𝛿2 are condition rule nodes in the ‘‘spn:if’’ positions,
he 𝛽1, 𝛽2 and 𝛽3 are leaf rule nodes returning a multiset of tokens.
he split paths of 𝑓 are shown in Fig. 4(b), which can be written as
plit(𝑓) = {⟨𝛿1, 𝛽1⟩, ⟨¬𝛿1 ∧ 𝛿2, 𝛽2⟩, ⟨¬𝛿1 ∧ ¬𝛿2, 𝛽3⟩}. Let 𝜔1, 𝜔2 and 𝜔3 be
he inverses of 𝛽1, 𝛽2, 𝛽3, respectively. Let 𝛿′1 and 𝛿′2 be the ‘‘SELECT’’
tatements converted from 𝛿1 and 𝛿2, respectively. Then in Fig. 4(c),
he composed inverse of each path starts with the corresponding 𝜔𝑖
ule, and the converted ‘‘SELECT’’ rules are appended for filtering the
indings queried by the 𝜔 rule.
𝑖

Advanced Engineering Informatics 57 (2023) 102099H. Liu et al.
Fig. 4. An example of composing the inverse of an arc expression with tree structure.

5. Application case

In this section, a case is provided to demonstrate the application
of SPN in modeling state changes with semantic constraints in the
construction industry. The case is about simulating the construction
process of a building project, in which the state change of a building
element may be constrained by the state of its host building element or
its related spatial structure.

The construction process of an asset can be represented as a spatio-
temporal model in which each building element changes the state from
‘‘uninstalled’’ to ‘‘installed’’. There are various dependency rules for
deciding whether a state change is allowed, such as the amount of
material and tools, the constraint on periods, the state of host objects
and permission files. The state change dependencies may involve the
properties of the building elements and the relationships between
building elements. The enriched domain RDF graph can provide much
information about the building elements, spaces, roles, and linked ex-
ternal documents. By modeling the state changes with an SPN structure,
the dependency rules can be composed for involving the information
from the domain RDF graph and supporting automatic checking and
simulation for the construction process.
10
Fig. 5. The input data in the SPN use case for modeling the construction process.

A sample model of an office building [74] is used in the experiment,
as shown in Fig. 5(a). The input schedule data is about the starting and
ending timestamps for the construction phases of the levels, in which
each phase corresponds to a discipline, including structure (ST), archi-
tecture (AR), and mechanical-electrical-plumbing (MEP), as shown in
Fig. 5(b). The input model is in IFC format. The building elements,
properties, and relationships used in the application case are extracted
from the model to form an RDF graph. The RDF graph can be in the
ifcOWL schema, or some other RDF schemas that is suitable to represent
the building elements and relationships. In this case, a simplified IFC4
schema in RDFS is used, which involves the classification of entities
and the attribute names for the entities.

The SPN structure is set up for modeling the state changes in the
construction process for each type of building object, as shown in
Fig. 6(a). The states are represented as a series of places, and the
dependencies are represented as the guard rules of the transitions.
Small building components have two states (uninstalled and installed),
and large components like walls and slabs have three states (not-
started, in-processing, and finished). In the state change rules for the
building elements, the concerned latent semantic connections between
the building elements and spaces are marked as dashed arrows. The
building elements are contained in the building levels with the ‘‘IfcRel-
ContainedInSpatialStructure’’ relationships, and the levels are linked
with the input schedules. The relationships between building elements
are also involved. For example, the openings must be installed during
the construction of the host walls, and the installation of windows and
doors must be after the finish of the host openings and walls.

Fig. 6(b) shows the RDF representation of an example transition that
ends the structure construction phase of levels. Rows 1 to 4 are the
representation of this transition. The transition has an argument named
‘‘?level’’ shown in rows 5 to 6, which can be assigned a token from

Advanced Engineering Informatics 57 (2023) 102099H. Liu et al.
Fig. 6. The SPN model for the construction process.
the input place. Rows 7 to 9 are the guard rule node of the transition,
which is the negation of another SPARQL rule shown in rows 10 to
20. The SPARQL clauses in rows 13 to 17 find the places with the
same discipline tag as the transition (‘‘?SELF’’), and the state tags of the
places are not ‘‘END’’. The SPARQL clauses in rows 18 to 19 find the
elements related to the level token in the IFC data, and the elements
are also contained in the places without an ‘‘END’’ state tag. If such
elements are found in the query result, the rule ‘‘:sprule_1’’ returns
true, and then the negation rule ‘‘:cprule_0’’ returns false, which means
that the transition is not allowed to fire, and the structure construction
phase of the level is not allowed to end.

On top of all the transitions and places for each building element
type, there is a place recording the date value. The input schedule is
for the combinations of level-discipline, and the schedule is represented
as guard rules of the corresponding transitions. The guard rules require
11
that the level-discipline token is not allowed to move to the next place
until the date number is greater than the given value.

The construction process is usually constrained by several other
issues. For example, the upper limit of concurrency may be constrained
by the number of machines, the maximum operations per day may be
constrained by the number of workers, and the minimum days required
for a procedure may be according to the feature of the materials. In our
experiment, such additional constraints are also included in the SPN
rules.

• The rule of the upper limit of concurrency is represented in the
guard rule considering the maximum number of tokens in the
output place, which stands for the maximum number of building

elements that can be in the same state in a moment.

Advanced Engineering Informatics 57 (2023) 102099H. Liu et al.

e
i
k
p
T
T
b

t
m
d
t
f
s
s
u
s

a
a
i
a
i
t
i

s
h
s
t
s
b
w
s
e
e

6

a
w
g
o
s
i
a
c
T
m
t
t

f
t
s

• A counter place is set for recording the number of triggering of
a transition on each day, and the counter place is checked in the
guard rules for those transitions with the maximum operations
constraint.

• A building element token is attached with a date tag for recording
the time of the last state change, and the transition for moving the
token out of the current place will check the date tag to ensure
the minimum timespan staying in the current state.

On each day of the simulation, the SPN runner keeps finding the
nabled binding elements and firing the transitions. Once a transition
s fired, its number of fires is updated in the counter place. A transition
eeps being fired on this day until there are no more tokens in the input
lace to pass the guard rule or it exceeds the maximum number of fires.
he runner stops when no more enabled transitions exist in the SPN.
hen the date number is updated, and the counter place is refreshed to
e prepared for the next day.

The SPN structure in this experiment has 70 places and 43 transi-
ions, and there are in total 135 rules in the SPN. On initializing the
odel, 4 levels and 7,169 building objects from the IFC model are
ispatched to the starting places as tokens. With the input schedule and
he constraints represented as the guard rules, the application runs to
ind a sequence of state changes that satisfies all the constraints. The
imulation outputs a result of pass (all tokens move to the end places
uccessfully) or not pass (the system stops with some of the tokens
nable to move to the end places). The result shows whether the input
chedule conflicts with the constraints for state changes.

The experiment is performed on a PC with a processor in 3.19 GHz
nd 64 GB of physical memory. In a recorded experimental result, with
proper configuration of the constraints, the 90-day simulation finishes

n 250 s. During the simulation, the rules are checked 440,200 times,
nd the transitions are triggered 8,235 times in total to move the tokens
nto the end places. If the configuration of the constraint is improper,
he simulation will stop on a certain day when the construction phase
s unable to finish.

The record of the simulation can be outputted as one possible
equence of state changes of the Petri Net. Since the simulation of SPN
as random behaviors, in a future case, when the constraints get more
trict, only some of the possible sequences in the state space might pass
he constraints. The current SPN tool has the ability to validate one
equence of state changes, and it also has the ability to find adjacent
inding elements according to a current state. With such abilities, it
ould be an interest of future study to scan the state space of the

ystem, in order to find a proper (or even optimal) sequence of binding
lements, which can be output as a fine-grained schedule for every
lement.

. Conclusion and future work

In this paper, the SPN is proposed as a novel method for modeling
nd validating temporal states directly based on OWL and SPARQL,
hich realizes the two-way sharing of knowledge between domain RDF
raphs and temporal models in the runtime. The structure components
f the SPN temporal model are represented as RDF graphs, and the
tate change rules are represented as SPARQL queries. The SPN runner
s implemented based on the functions of common RDF repositories
nd SPARQL endpoints, which supports the integrated checking of state
hange rules involving both temporal states and semantic knowledge.
he application case demonstrates the ability of SPN to model a process
ap, in which the state change rules are assigned to different collec-

ions of building elements, and such collections can be defined by RDF
ypes or flexible SPARQL queries.

In our simulation, the transitions are triggered automatically on
inding the enabled bindings. Considering a real digital twin applica-
ion, with the interface connecting the SPN with other information
ystems, the transitions can be triggered by human commands or by
12
sensor events. The guard rules are checked to ensure that the state
changes are allowed, and the state change events may also interact with
other information systems. The list of found enabled binding elements
can also be used to provide recommendations on the next transitions
according to a current state.

However, the implementation of SPN in this paper is only a rough
attempt at integrating temporal models and semantic web applications.
There are still limitations in the current implementation, and further
study is needed to fulfill the ability of the Petri Net to model and
analyze the temporal states in domain-specific applications. First, the
current implementation of SPN supports validating one input sequence
of binding elements or randomly selecting enabled binding elements
for simulation. The algorithms to search the state space and to find
possible or optimal sequences of state changes are still to be studied.
Second, the discussions on the downward compatibility of SPN and the
method of finding enabled bindings are still rough. Theoretical studies
on the problems are still needed, in order that the mathematical tools
can be introduced to analyze the behavior of a complex concurrent
system modeled in SPN [18]. Third, in the experiments in this paper,
the SPN structures and rules are composed in programming scripts, and
a more user-friendly visual tool is needed to set up the process model
and constraints, load the domain data, and perform the applications.
Finally, the SPN method proposed in this paper is defined based on the
LDP [71] and SPARQL [7], which is with flexibility to accept various
RDF data, but lacks sufficient constraints for supporting decidable
inferencing. Further discussions about the constraints on the SPN to
support applications with inferencing can be a topic for future research.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

The codes and data are provided in GitHub repository: https://
github.com/highan911/CBIMS.SPN.

Acknowledgments

This work was supported in part by the 2019 MIIT Industrial
Internet Innovation and Development Project ‘‘BIM Software Industry
Standardization and Public Service Platform’’.

References

[1] W. Shen, Q. Hao, H. Mak, J. Neelamkavil, H. Xie, J. Dickinson, R. Thomas,
A. Pardasani, H. Xue, Systems integration and collaboration in architecture,
engineering, construction, and facilities management: A review, Adv. Eng.
Inform. 24 (2) (2010) 196–207.

[2] S. Kaewunruen, P. Rungskunroch, J. Welsh, A digital-twin evaluation of net zero
energy building for existing buildings, Sustainability 11 (1) (2019) 159.

[3] Q. Lu, X. Xie, J. Heaton, A.K. Parlikad, J. Schooling, From BIM towards
digital twin: Strategy and future development for smart asset management,
in: International Workshop on Service Orientation in Holonic and Multi-Agent
Manufacturing, Springer, 2019, pp. 392–404.

[4] J.M.D. Delgado, L. Oyedele, Digital twins for the built environment: learning
from conceptual and process models in manufacturing, Adv. Eng. Inform. 49
(2021) 101332.

[5] D.L. McGuinness, F. van Harmelen, OWL web ontology language, 2004, Available
from: https://www.w3.org/TR/owl-features/. (Accessed January 2022).

[6] W3C OWL Working Group, OWL 2 Web Ontology Language, 2012, Available
from: https://www.w3.org/TR/owl2-overview/ (accessed January 2022).

[7] S. Harris, A. Seaborne, SPARQL 1.1 query language, 2013, Available from:
http://www.w3.org/TR/sparql11-query/. (Accessed January 2022).

[8] H. Knublauch, D. Kontokostas, Shapes constraint language (SHACL), 2017,
Available from: https://www.w3.org/TR/shacl/. (Accessed January 2022).

https://github.com/highan911/CBIMS.SPN
https://github.com/highan911/CBIMS.SPN
https://github.com/highan911/CBIMS.SPN
http://refhub.elsevier.com/S1474-0346(23)00227-6/sb1
http://refhub.elsevier.com/S1474-0346(23)00227-6/sb1
http://refhub.elsevier.com/S1474-0346(23)00227-6/sb1
http://refhub.elsevier.com/S1474-0346(23)00227-6/sb1
http://refhub.elsevier.com/S1474-0346(23)00227-6/sb1
http://refhub.elsevier.com/S1474-0346(23)00227-6/sb1
http://refhub.elsevier.com/S1474-0346(23)00227-6/sb1
http://refhub.elsevier.com/S1474-0346(23)00227-6/sb2
http://refhub.elsevier.com/S1474-0346(23)00227-6/sb2
http://refhub.elsevier.com/S1474-0346(23)00227-6/sb2
http://refhub.elsevier.com/S1474-0346(23)00227-6/sb3
http://refhub.elsevier.com/S1474-0346(23)00227-6/sb3
http://refhub.elsevier.com/S1474-0346(23)00227-6/sb3
http://refhub.elsevier.com/S1474-0346(23)00227-6/sb3
http://refhub.elsevier.com/S1474-0346(23)00227-6/sb3
http://refhub.elsevier.com/S1474-0346(23)00227-6/sb3
http://refhub.elsevier.com/S1474-0346(23)00227-6/sb3
http://refhub.elsevier.com/S1474-0346(23)00227-6/sb4
http://refhub.elsevier.com/S1474-0346(23)00227-6/sb4
http://refhub.elsevier.com/S1474-0346(23)00227-6/sb4
http://refhub.elsevier.com/S1474-0346(23)00227-6/sb4
http://refhub.elsevier.com/S1474-0346(23)00227-6/sb4
https://www.w3.org/TR/owl-features/
https://www.w3.org/TR/owl2-overview/
http://www.w3.org/TR/sparql11-query/
https://www.w3.org/TR/shacl/

Advanced Engineering Informatics 57 (2023) 102099H. Liu et al.
[9] I. Horrocks, P.F. Patel-Schneider, H. Boley, S. Tabet, B. Grosof, M. Dean, SWRL:
A semantic web rule language combining OWL and RuleML, 2004, Available
from: https://www.w3.org/Submission/SWRL/. (Accessed January 2022).

[10] P. Pauwels, D. Van Deursen, R. Verstraeten, J. De Roo, R. De Meyer, R. Van de
Walle, J. Van Campenhout, A semantic rule checking environment for building
performance checking, Autom. Constr. 20 (5) (2011) 506–518.

[11] P. Pauwels, S. Zhang, Semantic rule-checking for regulation compliance checking:
An overview of strategies and approaches, in: 32rd International CIB W78
Conference, 2015, pp. 619–628.

[12] T.H. Beach, Y. Rezgui, H. Li, T. Kasim, A rule-based semantic approach for
automated regulatory compliance in the construction sector, Expert Syst. Appl.
42 (12) (2015) 5219–5231.

[13] C. Zhang, J. Beetz, B. de Vries, BimSPARQL: Domain-specific functional SPARQL
extensions for querying RDF building data, Semant. Web J. (Preprint) (2018)
1–27.

[14] H. Zhang, W. Zhao, J. Gu, H. Liu, M. Gu, Semantic web based rule checking
of real-world scale BIM models: a pragmatic method, in: International Congress
and Conferences on Computational Design and Engineering, I3CDE, 2019, pp.
130–137.

[15] M. Koubarakis, K. Kyzirakos, Modeling and querying metadata in the semantic
sensor web: the model stRDF and the query language stSPARQL, in: International
Conference on the Semantic Web: Research & Applications, 2010, pp. 425–439.

[16] C.A. Petri, Kommunikation Mit Automaten (Ph.D. Thesis), University of Bonn,
1962.

[17] C.A. Petri, W. Reisig, Petri net, Scholarpedia 3 (4) (2008) 6477.
[18] K. Jensen, L.M. Kristensen, Coloured Petri Nets: Modelling and Validation of

Concurrent Systems, Springer Science & Business Media, 2009.
[19] Y. Belgueliel, M. Bourahla, M. Brik, Towards an ontology for UML state machines,

Lect. Notes Softw. Eng. 2 (1) (2014) 116.
[20] A. Annane, N. Aussenac-Gilles, M. Kamel, BBO: BPMN 2.0 based ontology for

business process representation, in: 20th European Conference on Knowledge
Management, Vol. 1, ECKM 2019, 2019, pp. 49–59.

[21] F. Zhang, Z.M. Ma, S. Ribarić, Representation of Petri Net with OWL DL ontology,
in: 2011 Eighth International Conference on Fuzzy Systems and Knowledge
Discovery, Vol. 3, FSKD, IEEE, 2011, pp. 1396–1400.

[22] J. Yim, J. Joo, G. Lee, Petri Net representation of ontologies for indoor location-
based services, in: International Conference on Grid and Distributed Computing,
Springer, 2011, pp. 423–430.

[23] D. Arena, D. Kiritsis, A methodological framework for ontology-driven instantia-
tion of Petri Net manufacturing process models, in: IFIP International Conference
on Product Lifecycle Management, Springer, 2017, pp. 557–567.

[24] J. Szkoła, K. Pancerz, Petri Nets over ontological graphs: Conception and
application for modelling tasks of robots, in: International Joint Conference on
Rough Sets, Springer, 2017, pp. 207–214.

[25] L.E.G. Moctezuma, B.R. Ferrer, X. Xu, A. Lobov, J.L.M. Lastra, Knowledge-driven
finite-state machines. Study case in monitoring industrial equipment, in: 2015
IEEE 13th International Conference on Industrial Informatics, INDIN, IEEE, 2015,
pp. 1056–1062.

[26] Apache Software Foundation, Apache Jena, 2019, Available from: http://jena.
apache.org/. (Accessed January 2022).

[27] dotNetRDF Project, dotNetRDF, 2019, Available from: http://dotnetrdf.org/.
(Accessed January 2022).

[28] J. Beetz, J.V. Leeuwen, B.D. Vries, IfcOWL: A case of transforming EXPRESS
schemas into ontologies, Artif. Intell. Eng. Des. Anal. Manuf. 23 (23) (2009)
89–101.

[29] buildingSMART, Industry Foundation Classes IFC4 official release, 2013,
Available from: https://standards.buildingsmart.org/IFC/RELEASE/IFC4/FINAL/
HTML/. (Accessed January 2022).

[30] Z. Chevallier, B. Finance, B.C. Boulakia, A reference architecture for smart
building digital twin, in: SeDiT Workshop at ESWC, 2020, pp. 1–12.

[31] M.H. Rasmussen, M. Lefrançois, G.F. Schneider, P. Pauwels, BOT: the building
topology ontology of the W3C linked building data group, Semant. Web 12 (1)
(2021) 143–161.

[32] J. Park, J. Chen, Y.K. Cho, Self-corrective knowledge-based hybrid tracking
system using BIM and multimodal sensors, Adv. Eng. Inform. 32 (2017) 126–138.

[33] R. Hendrikx, P. Pauwels, E. Torta, H.P. Bruyninckx, M. van de Molengraft,
Connecting semantic building information models and robotics: An application to
2D LiDAR-based localization, in: 2021 IEEE International Conference on Robotics
and Automation, ICRA, IEEE, 2021, pp. 11654–11660.

[34] P. Pauwels, A. Roxin, SimpleBIM: From full ifcOWL graphs to simplified building
graphs, in: EWork and EBusiness in Architecture, Engineering and Construction,
CRC Press, 2017, pp. 11–18.

[35] P. Pauwels, T. Krijnen, W. Terkaj, J. Beetz, Enhancing the ifcOWL ontology
with an alternative representation for geometric data, Autom. Constr. 80 (2017)
77–94.
13
[36] P. Pauwels, D. Shelden, J. Brouwer, D. Sparks, SahaNirvik, T.P. McGinley,
Building and Semantics: Data Models and Web Technologies for the Built
Environment, CRC Press, 2022, pp. 106–107.

[37] S. Törmä, Y. Zheng, Digital construction ontologies, 2021, Available from: https:
//digitalconstruction.github.io/v/0.3/index.html. (Accessed April 2023).

[38] Brick Consortium, Inc., Brick: A uniform metadata schema for buildings, 2020,
Available from: https://brickschema.org/. (Accessed April 2023).

[39] A. Wagner, U. Rüppel, BPO: The building product ontology for assembled
products, in: Proceedings of the 7th Linked Data in Architecture and Construction
Workshop, LDAC 2019’, Lisbon, Portugal, 2019, p. 12.

[40] P. Pauwels, Building element ontology, 2018, Available from: https://pi.pauwel.
be/voc/buildingelement. (Accessed April 2023).

[41] P. Pauwels, Distribution element ontology, 2019, Available from: https://pi.
pauwel.be/voc/distributionelement. (Accessed April 2023).

[42] M.H. Rasmussen, P. Pauwels, M. Lefrançois, G.F. Schneider, Building topology
ontology, 2021, Available from: https://w3c-lbd-cg.github.io/bot/. (Accessed
April 2023).

[43] M. Holten Rasmussen, M. Lefrançois, M. Bonduel, C. Anker Hviid, J. Karlshø j,
OPM: An ontology for describing properties that evolve over time, in: CEUR
Workshop Proceedings, Vol. 2159, 2018, pp. 24–33.

[44] M.H. Rasmussen, M. Lefrançois, Ontology for property management, 2018,
Available from: https://w3c-lbd-cg.github.io/opm/. (Accessed April 2023).

[45] A. Wagner, M. Bonduel, P. Pauwels, OMG: Ontology for managing geometry,
2019, Available from: https://www.projekt-scope.de/ontologies/omg/. (Accessed
April 2023).

[46] M. Bonduel, A. Wagner, P. Pauwels, FOG: File ontology for geometry formats,
2020, Available from: https://mathib.github.io/fog-ontology/. (Accessed April
2023).

[47] R. Battle, D. Kolas, GeoSPARQL: enabling a geospatial semantic web, Semant.
Web J. 3 (4) (2011) 355–370.

[48] J. Wix, J. Karlshoej, Information Delivery Manual: Guide to components and
development methods, 2010, Available from: https://standards.buildingsmart.
org/documents/IDM/IDM_guide-CompsAndDevMethods-IDMC_004-v1_2.pdf.
(Accessed January 2022).

[49] R. See, J. Karlshoej, D. Davis, An integrated process for delivering IFC based data
exchange, 2012, Available from: https://standards.buildingsmart.org/documents/
IDM/IDM_guide-IntegratedProcess-2012_09.pdf. (Accessed January 2022).

[50] OMG, Business process modeling notation version 1.0, in: OMG Final Adopted
Specification, Object Management Group, Vol. 190, 2006.

[51] G. Decker, R. Dijkman, M. Dumas, L. García-Bañuelos, The business process
modeling notation, in: Modern Business Process Automation, Springer, 2010, pp.
347–368.

[52] G.H. Mealy, A method for synthesizing sequential circuits, Bell Syst. Tech. J. 34
(5) (1955) 1045–1079.

[53] E.F. Moore, et al., Gedanken-experiments on sequential machines, Autom. Stud.
34 (1956) 129–153.

[54] W. Reisig, Petri Nets and algebraic specifications, in: High-Level Petri Nets,
Springer, 1991, pp. 137–170.

[55] K. Yamalidou, J. Moody, M. Lemmon, P. Antsaklis, Feedback control of Petri
Nets based on place invariants, Automatica 32 (1) (1996) 15–28.

[56] K. Wolf, Generating Petri Net state spaces, in: International Conference on
Application and Theory of Petri Nets, Springer, 2007, pp. 29–42.

[57] K. Ryu, E. Yücesan, CPM: A collaborative process modeling for cooperative
manufacturers, Adv. Eng. Inform. 21 (2) (2007) 231–239.

[58] R.M. Dijkman, M. Dumas, C. Ouyang, Semantics and analysis of business process
models in BPMN, Inf. Softw. Technol. 50 (12) (2008) 1281–1294.

[59] R. Scherer, F. Kog, Transformation of business process models into Petri Nets
for building process simulation, in: EWork and EBusiness in Architecture,
Engineering and Construction: ECPPM, 2010, pp. 151–156.

[60] R.J. Scherer, S.-E. Schapke, A distributed multi-model-based management infor-
mation system for simulation and decision-making on construction projects, Adv.
Eng. Inform. 25 (4) (2011) 582–599.

[61] K. Jensen, Coloured Petri nets, in: Petri Nets: Central Models and their Properties,
Springer, 1987, pp. 248–299.

[62] J.L. Peterson, A note on Colored Petri Nets, Inf. Process. Lett. 11 (1) (1980)
40–43.

[63] C. Natschläger, Towards a BPMN 2.0 ontology, in: International Workshop on
Business Process Modeling Notation, Springer, 2011, pp. 1–15.

[64] M. Rospocher, C. Ghidini, L. Serafini, An ontology for the Business Process
Modelling Notation, in: FOIS, 2014, pp. 133–146.

[65] D. Gašević, Petri Nets on the semantic web guidelines and infrastructure,
Comput. Sci. Inf. Syst. 1 (2) (2004) 127–151.

[66] M. Bing-xian, X. Ying-lei, Integrating PNML with OWL for Petri Nets, in:
2009 2nd IEEE International Conference on Computer Science and Information
Technology, IEEE, 2009, pp. 228–230.

https://www.w3.org/Submission/SWRL/
http://refhub.elsevier.com/S1474-0346(23)00227-6/sb10
http://refhub.elsevier.com/S1474-0346(23)00227-6/sb10
http://refhub.elsevier.com/S1474-0346(23)00227-6/sb10
http://refhub.elsevier.com/S1474-0346(23)00227-6/sb10
http://refhub.elsevier.com/S1474-0346(23)00227-6/sb10
http://refhub.elsevier.com/S1474-0346(23)00227-6/sb11
http://refhub.elsevier.com/S1474-0346(23)00227-6/sb11
http://refhub.elsevier.com/S1474-0346(23)00227-6/sb11
http://refhub.elsevier.com/S1474-0346(23)00227-6/sb11
http://refhub.elsevier.com/S1474-0346(23)00227-6/sb11
http://refhub.elsevier.com/S1474-0346(23)00227-6/sb12
http://refhub.elsevier.com/S1474-0346(23)00227-6/sb12
http://refhub.elsevier.com/S1474-0346(23)00227-6/sb12
http://refhub.elsevier.com/S1474-0346(23)00227-6/sb12
http://refhub.elsevier.com/S1474-0346(23)00227-6/sb12
http://refhub.elsevier.com/S1474-0346(23)00227-6/sb13
http://refhub.elsevier.com/S1474-0346(23)00227-6/sb13
http://refhub.elsevier.com/S1474-0346(23)00227-6/sb13
http://refhub.elsevier.com/S1474-0346(23)00227-6/sb13
http://refhub.elsevier.com/S1474-0346(23)00227-6/sb13
http://refhub.elsevier.com/S1474-0346(23)00227-6/sb14
http://refhub.elsevier.com/S1474-0346(23)00227-6/sb14
http://refhub.elsevier.com/S1474-0346(23)00227-6/sb14
http://refhub.elsevier.com/S1474-0346(23)00227-6/sb14
http://refhub.elsevier.com/S1474-0346(23)00227-6/sb14
http://refhub.elsevier.com/S1474-0346(23)00227-6/sb14
http://refhub.elsevier.com/S1474-0346(23)00227-6/sb14
http://refhub.elsevier.com/S1474-0346(23)00227-6/sb15
http://refhub.elsevier.com/S1474-0346(23)00227-6/sb15
http://refhub.elsevier.com/S1474-0346(23)00227-6/sb15
http://refhub.elsevier.com/S1474-0346(23)00227-6/sb15
http://refhub.elsevier.com/S1474-0346(23)00227-6/sb15
http://refhub.elsevier.com/S1474-0346(23)00227-6/sb16
http://refhub.elsevier.com/S1474-0346(23)00227-6/sb16
http://refhub.elsevier.com/S1474-0346(23)00227-6/sb16
http://refhub.elsevier.com/S1474-0346(23)00227-6/sb17
http://refhub.elsevier.com/S1474-0346(23)00227-6/sb18
http://refhub.elsevier.com/S1474-0346(23)00227-6/sb18
http://refhub.elsevier.com/S1474-0346(23)00227-6/sb18
http://refhub.elsevier.com/S1474-0346(23)00227-6/sb19
http://refhub.elsevier.com/S1474-0346(23)00227-6/sb19
http://refhub.elsevier.com/S1474-0346(23)00227-6/sb19
http://refhub.elsevier.com/S1474-0346(23)00227-6/sb20
http://refhub.elsevier.com/S1474-0346(23)00227-6/sb20
http://refhub.elsevier.com/S1474-0346(23)00227-6/sb20
http://refhub.elsevier.com/S1474-0346(23)00227-6/sb20
http://refhub.elsevier.com/S1474-0346(23)00227-6/sb20
http://refhub.elsevier.com/S1474-0346(23)00227-6/sb21
http://refhub.elsevier.com/S1474-0346(23)00227-6/sb21
http://refhub.elsevier.com/S1474-0346(23)00227-6/sb21
http://refhub.elsevier.com/S1474-0346(23)00227-6/sb21
http://refhub.elsevier.com/S1474-0346(23)00227-6/sb21
http://refhub.elsevier.com/S1474-0346(23)00227-6/sb22
http://refhub.elsevier.com/S1474-0346(23)00227-6/sb22
http://refhub.elsevier.com/S1474-0346(23)00227-6/sb22
http://refhub.elsevier.com/S1474-0346(23)00227-6/sb22
http://refhub.elsevier.com/S1474-0346(23)00227-6/sb22
http://refhub.elsevier.com/S1474-0346(23)00227-6/sb23
http://refhub.elsevier.com/S1474-0346(23)00227-6/sb23
http://refhub.elsevier.com/S1474-0346(23)00227-6/sb23
http://refhub.elsevier.com/S1474-0346(23)00227-6/sb23
http://refhub.elsevier.com/S1474-0346(23)00227-6/sb23
http://refhub.elsevier.com/S1474-0346(23)00227-6/sb24
http://refhub.elsevier.com/S1474-0346(23)00227-6/sb24
http://refhub.elsevier.com/S1474-0346(23)00227-6/sb24
http://refhub.elsevier.com/S1474-0346(23)00227-6/sb24
http://refhub.elsevier.com/S1474-0346(23)00227-6/sb24
http://refhub.elsevier.com/S1474-0346(23)00227-6/sb25
http://refhub.elsevier.com/S1474-0346(23)00227-6/sb25
http://refhub.elsevier.com/S1474-0346(23)00227-6/sb25
http://refhub.elsevier.com/S1474-0346(23)00227-6/sb25
http://refhub.elsevier.com/S1474-0346(23)00227-6/sb25
http://refhub.elsevier.com/S1474-0346(23)00227-6/sb25
http://refhub.elsevier.com/S1474-0346(23)00227-6/sb25
http://jena.apache.org/
http://jena.apache.org/
http://jena.apache.org/
http://dotnetrdf.org/
http://refhub.elsevier.com/S1474-0346(23)00227-6/sb28
http://refhub.elsevier.com/S1474-0346(23)00227-6/sb28
http://refhub.elsevier.com/S1474-0346(23)00227-6/sb28
http://refhub.elsevier.com/S1474-0346(23)00227-6/sb28
http://refhub.elsevier.com/S1474-0346(23)00227-6/sb28
https://standards.buildingsmart.org/IFC/RELEASE/IFC4/FINAL/HTML/
https://standards.buildingsmart.org/IFC/RELEASE/IFC4/FINAL/HTML/
https://standards.buildingsmart.org/IFC/RELEASE/IFC4/FINAL/HTML/
http://refhub.elsevier.com/S1474-0346(23)00227-6/sb30
http://refhub.elsevier.com/S1474-0346(23)00227-6/sb30
http://refhub.elsevier.com/S1474-0346(23)00227-6/sb30
http://refhub.elsevier.com/S1474-0346(23)00227-6/sb31
http://refhub.elsevier.com/S1474-0346(23)00227-6/sb31
http://refhub.elsevier.com/S1474-0346(23)00227-6/sb31
http://refhub.elsevier.com/S1474-0346(23)00227-6/sb31
http://refhub.elsevier.com/S1474-0346(23)00227-6/sb31
http://refhub.elsevier.com/S1474-0346(23)00227-6/sb32
http://refhub.elsevier.com/S1474-0346(23)00227-6/sb32
http://refhub.elsevier.com/S1474-0346(23)00227-6/sb32
http://refhub.elsevier.com/S1474-0346(23)00227-6/sb33
http://refhub.elsevier.com/S1474-0346(23)00227-6/sb33
http://refhub.elsevier.com/S1474-0346(23)00227-6/sb33
http://refhub.elsevier.com/S1474-0346(23)00227-6/sb33
http://refhub.elsevier.com/S1474-0346(23)00227-6/sb33
http://refhub.elsevier.com/S1474-0346(23)00227-6/sb33
http://refhub.elsevier.com/S1474-0346(23)00227-6/sb33
http://refhub.elsevier.com/S1474-0346(23)00227-6/sb34
http://refhub.elsevier.com/S1474-0346(23)00227-6/sb34
http://refhub.elsevier.com/S1474-0346(23)00227-6/sb34
http://refhub.elsevier.com/S1474-0346(23)00227-6/sb34
http://refhub.elsevier.com/S1474-0346(23)00227-6/sb34
http://refhub.elsevier.com/S1474-0346(23)00227-6/sb35
http://refhub.elsevier.com/S1474-0346(23)00227-6/sb35
http://refhub.elsevier.com/S1474-0346(23)00227-6/sb35
http://refhub.elsevier.com/S1474-0346(23)00227-6/sb35
http://refhub.elsevier.com/S1474-0346(23)00227-6/sb35
http://refhub.elsevier.com/S1474-0346(23)00227-6/sb36
http://refhub.elsevier.com/S1474-0346(23)00227-6/sb36
http://refhub.elsevier.com/S1474-0346(23)00227-6/sb36
http://refhub.elsevier.com/S1474-0346(23)00227-6/sb36
http://refhub.elsevier.com/S1474-0346(23)00227-6/sb36
https://digitalconstruction.github.io/v/0.3/index.html
https://digitalconstruction.github.io/v/0.3/index.html
https://digitalconstruction.github.io/v/0.3/index.html
https://brickschema.org/
http://refhub.elsevier.com/S1474-0346(23)00227-6/sb39
http://refhub.elsevier.com/S1474-0346(23)00227-6/sb39
http://refhub.elsevier.com/S1474-0346(23)00227-6/sb39
http://refhub.elsevier.com/S1474-0346(23)00227-6/sb39
http://refhub.elsevier.com/S1474-0346(23)00227-6/sb39
https://pi.pauwel.be/voc/buildingelement
https://pi.pauwel.be/voc/buildingelement
https://pi.pauwel.be/voc/buildingelement
https://pi.pauwel.be/voc/distributionelement
https://pi.pauwel.be/voc/distributionelement
https://pi.pauwel.be/voc/distributionelement
https://w3c-lbd-cg.github.io/bot/
http://refhub.elsevier.com/S1474-0346(23)00227-6/sb43
http://refhub.elsevier.com/S1474-0346(23)00227-6/sb43
http://refhub.elsevier.com/S1474-0346(23)00227-6/sb43
http://refhub.elsevier.com/S1474-0346(23)00227-6/sb43
http://refhub.elsevier.com/S1474-0346(23)00227-6/sb43
https://w3c-lbd-cg.github.io/opm/
https://www.projekt-scope.de/ontologies/omg/
https://mathib.github.io/fog-ontology/
http://refhub.elsevier.com/S1474-0346(23)00227-6/sb47
http://refhub.elsevier.com/S1474-0346(23)00227-6/sb47
http://refhub.elsevier.com/S1474-0346(23)00227-6/sb47
https://standards.buildingsmart.org/documents/IDM/IDM_guide-CompsAndDevMethods-IDMC_004-v1_2.pdf
https://standards.buildingsmart.org/documents/IDM/IDM_guide-CompsAndDevMethods-IDMC_004-v1_2.pdf
https://standards.buildingsmart.org/documents/IDM/IDM_guide-CompsAndDevMethods-IDMC_004-v1_2.pdf
https://standards.buildingsmart.org/documents/IDM/IDM_guide-IntegratedProcess-2012_09.pdf
https://standards.buildingsmart.org/documents/IDM/IDM_guide-IntegratedProcess-2012_09.pdf
https://standards.buildingsmart.org/documents/IDM/IDM_guide-IntegratedProcess-2012_09.pdf
http://refhub.elsevier.com/S1474-0346(23)00227-6/sb50
http://refhub.elsevier.com/S1474-0346(23)00227-6/sb50
http://refhub.elsevier.com/S1474-0346(23)00227-6/sb50
http://refhub.elsevier.com/S1474-0346(23)00227-6/sb51
http://refhub.elsevier.com/S1474-0346(23)00227-6/sb51
http://refhub.elsevier.com/S1474-0346(23)00227-6/sb51
http://refhub.elsevier.com/S1474-0346(23)00227-6/sb51
http://refhub.elsevier.com/S1474-0346(23)00227-6/sb51
http://refhub.elsevier.com/S1474-0346(23)00227-6/sb52
http://refhub.elsevier.com/S1474-0346(23)00227-6/sb52
http://refhub.elsevier.com/S1474-0346(23)00227-6/sb52
http://refhub.elsevier.com/S1474-0346(23)00227-6/sb53
http://refhub.elsevier.com/S1474-0346(23)00227-6/sb53
http://refhub.elsevier.com/S1474-0346(23)00227-6/sb53
http://refhub.elsevier.com/S1474-0346(23)00227-6/sb54
http://refhub.elsevier.com/S1474-0346(23)00227-6/sb54
http://refhub.elsevier.com/S1474-0346(23)00227-6/sb54
http://refhub.elsevier.com/S1474-0346(23)00227-6/sb55
http://refhub.elsevier.com/S1474-0346(23)00227-6/sb55
http://refhub.elsevier.com/S1474-0346(23)00227-6/sb55
http://refhub.elsevier.com/S1474-0346(23)00227-6/sb56
http://refhub.elsevier.com/S1474-0346(23)00227-6/sb56
http://refhub.elsevier.com/S1474-0346(23)00227-6/sb56
http://refhub.elsevier.com/S1474-0346(23)00227-6/sb57
http://refhub.elsevier.com/S1474-0346(23)00227-6/sb57
http://refhub.elsevier.com/S1474-0346(23)00227-6/sb57
http://refhub.elsevier.com/S1474-0346(23)00227-6/sb58
http://refhub.elsevier.com/S1474-0346(23)00227-6/sb58
http://refhub.elsevier.com/S1474-0346(23)00227-6/sb58
http://refhub.elsevier.com/S1474-0346(23)00227-6/sb59
http://refhub.elsevier.com/S1474-0346(23)00227-6/sb59
http://refhub.elsevier.com/S1474-0346(23)00227-6/sb59
http://refhub.elsevier.com/S1474-0346(23)00227-6/sb59
http://refhub.elsevier.com/S1474-0346(23)00227-6/sb59
http://refhub.elsevier.com/S1474-0346(23)00227-6/sb60
http://refhub.elsevier.com/S1474-0346(23)00227-6/sb60
http://refhub.elsevier.com/S1474-0346(23)00227-6/sb60
http://refhub.elsevier.com/S1474-0346(23)00227-6/sb60
http://refhub.elsevier.com/S1474-0346(23)00227-6/sb60
http://refhub.elsevier.com/S1474-0346(23)00227-6/sb61
http://refhub.elsevier.com/S1474-0346(23)00227-6/sb61
http://refhub.elsevier.com/S1474-0346(23)00227-6/sb61
http://refhub.elsevier.com/S1474-0346(23)00227-6/sb62
http://refhub.elsevier.com/S1474-0346(23)00227-6/sb62
http://refhub.elsevier.com/S1474-0346(23)00227-6/sb62
http://refhub.elsevier.com/S1474-0346(23)00227-6/sb63
http://refhub.elsevier.com/S1474-0346(23)00227-6/sb63
http://refhub.elsevier.com/S1474-0346(23)00227-6/sb63
http://refhub.elsevier.com/S1474-0346(23)00227-6/sb64
http://refhub.elsevier.com/S1474-0346(23)00227-6/sb64
http://refhub.elsevier.com/S1474-0346(23)00227-6/sb64
http://refhub.elsevier.com/S1474-0346(23)00227-6/sb65
http://refhub.elsevier.com/S1474-0346(23)00227-6/sb65
http://refhub.elsevier.com/S1474-0346(23)00227-6/sb65
http://refhub.elsevier.com/S1474-0346(23)00227-6/sb66
http://refhub.elsevier.com/S1474-0346(23)00227-6/sb66
http://refhub.elsevier.com/S1474-0346(23)00227-6/sb66
http://refhub.elsevier.com/S1474-0346(23)00227-6/sb66
http://refhub.elsevier.com/S1474-0346(23)00227-6/sb66

Advanced Engineering Informatics 57 (2023) 102099H. Liu et al.
[67] Y. Wang, X. Bai, J. Li, R. Huang, Ontology-based test case generation for testing
web services, in: Eighth International Symposium on Autonomous Decentralized
Systems, ISADS’07, IEEE, 2007, pp. 43–50.

[68] J. Hendler, Agents and the semantic web, IEEE Intell. Syst. 16 (2) (2001) 30–37.
[69] H. Cheng, Z. Ma, A literature overview of knowledge sharing between Petri Nets

and ontologies, Knowl. Eng. Rev. 31 (3) (2016) 239–260.
[70] D. Beckett, T. Berners-Lee, Turtle - terse RDF triple language, 2014, Available

from: https://www.w3.org/TR/turtle/. (Accessed January 2022).
14
[71] W3C, Linked data platform 1.0, 2015, Available from: https://www.w3.org/TR/
ldp/. (Accessed January 2022).

[72] F. Liu, M. Heiner, M. Yang, An efficient method for unfolding Colored Petri Nets,
in: Proceedings of the 2012 Winter Simulation Conference, WSC, IEEE, 2012, pp.
1–12.

[73] L.M. Kristensen, S.r. Christensen, Implementing Coloured Petri Nets using a
functional programming language, Higher-Order Symb. Comput. 17 (3) (2004)
207–243.

[74] NIBS, Common building information model files and tools, 2012, Available from:
https://www.wbdg.org/bim/cobie/common-bim-files. (Accessed January 2022).

http://refhub.elsevier.com/S1474-0346(23)00227-6/sb67
http://refhub.elsevier.com/S1474-0346(23)00227-6/sb67
http://refhub.elsevier.com/S1474-0346(23)00227-6/sb67
http://refhub.elsevier.com/S1474-0346(23)00227-6/sb67
http://refhub.elsevier.com/S1474-0346(23)00227-6/sb67
http://refhub.elsevier.com/S1474-0346(23)00227-6/sb68
http://refhub.elsevier.com/S1474-0346(23)00227-6/sb69
http://refhub.elsevier.com/S1474-0346(23)00227-6/sb69
http://refhub.elsevier.com/S1474-0346(23)00227-6/sb69
https://www.w3.org/TR/turtle/
https://www.w3.org/TR/ldp/
https://www.w3.org/TR/ldp/
https://www.w3.org/TR/ldp/
http://refhub.elsevier.com/S1474-0346(23)00227-6/sb72
http://refhub.elsevier.com/S1474-0346(23)00227-6/sb72
http://refhub.elsevier.com/S1474-0346(23)00227-6/sb72
http://refhub.elsevier.com/S1474-0346(23)00227-6/sb72
http://refhub.elsevier.com/S1474-0346(23)00227-6/sb72
http://refhub.elsevier.com/S1474-0346(23)00227-6/sb73
http://refhub.elsevier.com/S1474-0346(23)00227-6/sb73
http://refhub.elsevier.com/S1474-0346(23)00227-6/sb73
http://refhub.elsevier.com/S1474-0346(23)00227-6/sb73
http://refhub.elsevier.com/S1474-0346(23)00227-6/sb73
https://www.wbdg.org/bim/cobie/common-bim-files

	Modeling and validating temporal rules with semantic Petri net for digital twins
	Introduction
	Related Work
	Modeling and Querying the Semantic Information in the Construction Industry
	Methods for Modeling and Validating Temporal States
	Interaction between Temporal Models and Semantic Web Applications

	The Semantic Petri Net (SPN)
	The Definition of SPN
	Representation of SPN Structures and Rules in OWL and SPARQL
	The Implementation of the SPN Tool

	Discussions on Analyzing the SPN
	The Downward Compatibility of SPN
	Finding the Adjacent States in the State Space of the SPN
	The Reachability Graph of Petri Nets
	Finding the Enabled Bindings for the SPN Transitions
	Finding the Inverse of a Rule with Condition Tree

	Application Case
	Conclusion and Future Work
	Declaration of competing interest
	Data availability
	Acknowledgments
	References

