Advanced Engineering Informatics 58 (2023) 102132

Contents lists available at ScienceDirect

Advanced Engineering Informatics

journal homepage: www.elsevier.com/locate/aei

Check for

MVDLite: A fast validation algorithm for Model View Definition rules | opnes’
Han Liu®®, Ge Gao *>*, Hehua Zhang ¢, Yu-Shen Liu *¢, Yan Song °, Ming Gu ®¢

a Tsinghua University, Haidian, Beijing, China
b Digital Horizon Technology Co., Ltd., Shenzhen, China
¢ Beijing National Research Center for Information Science and Technology (BNRist), Haidian, Beijing, China

ARTICLE INFO ABSTRACT

Keywords:

Model View Definition (MVD)
Industry Fundamental Classes (IFC)
Building Information Model (BIM)
Automated compliance checking

Model View Definition (MVD) is the mainstream method for formally representing the knowledge about the
data exchange of building information models (BIMs). The MVD ruleset can be used in automatically validating
the compliance of the BIM data against the exchange requirements and rule constraints. At present, MVD
validation is performed with the “matching-checking” process according to the data structure templates and
the rule statements respectively. However, there are redundant visit of edges and nodes in a process with
separated subgraph matching and value checking, and the efficiency of MVD validation on large real-world
models is still a challenge. In this paper, the MVDLite algorithm is proposed for the fast validation of MVD
rules. By integrating the separated templates and statements into a “rule-chain” structure, a fast round-trip
searching can be performed, which remarkably speeds up the MVD validation in the experiments. Discussions
on the complexity of the MVD validation algorithms and the applicable scope of the proposed algorithm are
also provided, which intends to bring some new ideas to the community about the future evolution of the

MVD technology.

1. Introduction

The Building Information Models (BIMs) are digital expressions
of physical and functional characteristics of objects in the process
of design, construction, operation and maintenance of assets in the
architectural, engineering and construction (AEC) field. A BIM system
consists of a variety of software with different functions, including BIM
modeling tools, data platforms and analysis tools, and many stakehold-
ers are involved in it. All kinds of BIM software tools form a pipeline in
the whole production process. The upstream software needs to provide
BIM data with the correct format and sufficient required information
to support the normal operation of the downstream software.

BIM data exchange is the process of transferring data between
heterogeneous BIM software tools, and it is the key link for realizing
BIM-based collaboration among stakeholders. The interoperability of
BIM data exchange means that within a specific requirement boundary,
the results of data exchange can guarantee the normal operation of
software supported by BIM.

The buildingSMART international organization has proposed several
standards for supporting the interoperability of BIM data exchange.
The Industry Foundation Classes (IFC) [1] is a standard open-source
data schema for BIMs, in which the object types and data structure
are specified. The Information Delivery Manual (IDM) [2,3] is a stan-
dard method for defining data exchange process, requirements and

* Corresponding author at: Tsinghua University, Haidian, Beijing, China.

constraints based on IFC. The Model View Definition (MVD) [4,5] is a
standard method for the digitalization of IDM, for supporting software
implementation and automatic data validation.

The IFC schema provided basic object types for supporting BIM data
exchange, including product types, geometry representations, proper-
ties, relationships, and so on. Each row in an IFC file corresponds to
a data node, and each type of node has a list of named attributes. The
value of attributes can be literals (such as strings or integer numbers) or
references pointing to other nodes. All the nodes and references form a
directed acyclic graph (DAG) structure. A DAG is a graph with directed
edges and no cycled references, which is a common data structure to
ensure that every node corresponds to determined data by a subgraph
rooted with the node. In addition, several named inverse attributes
are defined in the IFC schema for accessing the nodes that reference
the current node, and such inverse attributes are usually used to link
“IfcRelationship” nodes.

IFC is a standard with compatibility for general-purpose data ex-
change in the construction industry, in which the data nodes are in
coarse-grained classes, and the data types and properties are extensible.
The IDM-MVD methodology is proposed for defining fine-grained do-
main concepts corresponding to different nodesets in the IFC data, and
for representing the data exchange requirements as rule constraints [2,

E-mail addresses: liuhan@digital-h.cn (H. Liu), gaoge@tsinghua.edu.cn (G. Gao).

https://doi.org/10.1016/j.2€i.2023.102132

Received 16 December 2022; Received in revised form 4 June 2023; Accepted 7 August 2023

Available online 21 August 2023
1474-0346/© 2023 Published by Elsevier Ltd.

https://www.elsevier.com/locate/aei
http://www.elsevier.com/locate/aei
mailto:liuhan@digital-h.cn
mailto:gaoge@tsinghua.edu.cn
https://doi.org/10.1016/j.aei.2023.102132
https://doi.org/10.1016/j.aei.2023.102132
http://crossmark.crossref.org/dialog/?doi=10.1016/j.aei.2023.102132&domain=pdf

H. Liu et al.

3,6,7]. The digitalized MVD rules are commonly represented as an
mvdXML ruleset [8,9], which is recommended by the buildingSMART.
The mvdXML rules can be parsed by computers, which can support the
software implementation of IFC-based data exchange, and can be used
for automatically validating whether IFC models conform to the MVD
rules.

The digitalized MVD rules in the mvdXML ruleset are mainly in two
parts. The first part is the subgraph templates in the header part as
nested XML tags, which define the node types and edge names that form
a subgraph structure based on the IFC schema. The subgraph templates
are used to find matched subgraphs in the whole graph structure of an
IFC file. The second part is the rule statements, written in “mvdXML
Rule Grammar” in the body part, which define the value constraints
and logical interconnections for checking each matched subgraph.

Compared with the BIM code-checking methods with enriched ge-
ometry calculation and semantic inferencing [10-13], the MVD vali-
dation task focuses on fast finding data nodes and fast validation of
data structures and values in the IFC raw data. MVD validation can
be used as a fast pre-checking step for various applications that use
IFC as input data, including the enriched code-checking tasks [14,15].
The applicability rules in MVD can be used to quickly find fine-grained
nodesets according to the conditions. The constraint rules in MVD
can be used to check the conformance of data and to fetch required
attributes from the data.

At present, there have been several implementations of valida-
tion algorithms for mvdXML rulesets [16-19]. In accordance with the
separation of templates and rule statements in mvdXML, the current
validation algorithms usually follow the two-step “matching-checking”
process: first matching the template to find subgraphs from the data,
and then checking the rule statements on each found subgraph. How-
ever, in a process with separated subgraph matching and value check-
ing, there may be redundant visits of edges in finding subgraphs, and
the data values also tend to be checked repeatedly in the process.
Hence the efficiency of MVD validation of large rulesets on real-world
size models is still a challenge. The validation of an MVD ruleset with
thousands of rules on a large-scale model may take hours, which is an
obstacle in the promotion of MVD applications.

Aiming at the efficiency issue of MVD validation, the MVDLite
algorithm is proposed in this paper for the fast validation of MVD rules.
The main contributions are listed as follows.

+ A “rule chain” structure is introduced to combine and reorga-
nize the separated templates and rule statements from an input
mvdXML ruleset.

» The MVDLite algorithm is proposed for fast MVD validation by
performing round-trip searching on the rule chain structure.

» The complexity and applicable scope of the proposed algorithm
are discussed.

2. Related work

In this section, first, the related studies on IDM-MVD method are
reviewed (see Section 2.1). Next, the templates and rule statements
in the mvdXML ruleset are introduced (see Section 2.2). Finally, the
automated MVD validation methods are reviewed (see Section 2.3).

2.1. Research on the IDM-MVD method

The IFC schema is defined based on the 10303-11 “EXPRESS”
method [20]. The ISO 10303 series provide the methodology for defin-
ing data schemas and performing validation on data to ensure con-
formance to the schema. Based on the schema-level validation in ISO
10303, the IDM method is introduced in ISO 29481 [21] and ISO
15926-11 [22] for specifying user-defined data delivery process, ex-
change requirements, and constraint rules, in order to support trusted
information exchange in the industry.

Advanced Engineering Informatics 58 (2023) 102132

The MVD method is introduced in ISO 29481 as a technology to bind
the requirements and constraints to a certain data schema [21]. MVD
supports fine-grained validation and filtering of data, which intend to
realize meaningful IFC implementations for software developers [4].
According to ISO 29481, each rule in an MVD ruleset corresponds to
an “information unit” in the IDM document. An information unit in
IDM is about either a domain entity (e.g. a window) or an attribute of
a domain entity (e.g. the height of a window). One information unit
may have several attached constraints that are described in natural
language. As the technical solution of IDM, MVD rules are created to
represent the information units and constraints in computer-executable
rules. A domain entity is bound to a root nodeset in the data model,
and an attribute is bound to a path starting from a root node to reach
the required attribute node. The rule constraints are validated on the
subgraphs composed of the root entities and the attribute paths.

There have been several studies on implementing the IDM-MVD
method from different aspects. The Extended Process to Product Mod-
eling (xPPM) [23] focuses on the representation of IDM exchange
requirements in MVD. The xPPM is based on the formal definition of
exchange requirements and functional parts in IDM. A tool is provided
to build up the process maps with reusable functional parts. The
functional parts are mapped to IFC element types for generating MVD
rules, and the links between the functional parts and the exchange
requirements are kept in the MVD ruleset. The Semantic Exchange
Modules framework (SEM) [24,25] focuses on the definition of domain
concepts and their mapping to the IFC data structure. The SEM method
defines object-oriented and reusable modules for representing entities,
attributes and relationships. By mapping the domain concept modules
to the IFC schema, the data structure templates in the MVD ruleset
can be generated accordingly. The Generalised Model Subset Definition
(GMSD) [26] focuses on the rule constraints for specifying the partial
models. The GMSD method proposes the specification of rules for
querying a subset of entities from the IFC model. The entities can be
filtered by the range of values. The boolean operations between the
entity collections are also supported.

Based on the previous research about MVD, an integrated IDM-MVD
process for IFC data exchange is proposed and recommended by build-
ingSMART [3], which combines the strengths of the previous research.
The mvdXML format [9] is used for this integrated IDM-MVD process,
which involves abundant information about exchange requirements,
domain concepts, and rule constraints. The recommended IDM-MVD
process mainly includes:

» Defining the domain concepts (entities, properties, and geome-
tries), relationships and rule constraints in an Exchange Require-
ments Model (ERM) as forms and diagrams.

+ Binding the concept definitions in the ERM into a specific IFC
Release (such as IFC4).

» Writing the relationships and rule constraints into a specific IFC
Release as MVD Implementation Guidance forms and diagrams.

» Implementing the mvdXML according to the concept bindings,
forms, and diagrams.

In addition to mvdXML, there are other studies on specifying and
validating exchange requirements and constraints on industrial data
models. Many of these studies are based on semantic web technologies.
The data models defined with the 10303-11 “EXPRESS” method [20]
can be represented as RDF graphs, including the IfcOWL [27] and the
ISO 15926 data models [28]. The Linked Building Data (LBD) is another
recent topic for modularized representation of semantic models in the
construction industry [29]. SHACL (Shapes Constraint Language) [30]
is recommended in ISO 15926-10 as a validation method for data
models [31]. SHACL is also used in validating the data structures
and constraints of IfcOWL and LBD models [14,32-34]. SHACL has
much in common with mvdXML since they both represent the rules on
subgraphs composed of root nodesets and attribute paths.

H. Liu et al.

?>
tp://www.w3.0rg/2001/XMLSchema-instance"

<?xml version="1.
<mvdXML xmlns:xs

Advanced Engineering Informatics 58 (2023) 102132

xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"

uuid="ca533756-fc05-4f56-b091-04b953e362ed" status="sample" xsi:schemalLocation="http://www.buildingsmart-
tech.org/mvd/XML/1.1 http://www.buildingsmart-tech.org/mvd/XML/1.1/mvdXML_V1.1_addl.xsd"

xmlns="http://buildingsmart-tech.org/mvd/XML/1.1">
<Templates>

<ConceptTemplate uuid="d22c5deb-95d9-4686-800b-a23d292062c9" status="sample" applicableSchema="IFC4"
applicableEntity="IfcWall">
<Rules>
<AttributeRule RuleID="IsTypedBy_©" AttributeName="IsTypedBy">
<EntityRules>
<EntityRule EntityName="IfcRelDefinesByType">
<AttributeRules>
<AttributeRule RuleID="RelatingType_1" AttributeName="RelatingType">
<EntityRules>
<EntityRule EntityName="IfcTypeObject">
<AttributeRules>
<AttributeRule RuleID="HasPropertySets_2" AttributeName="HasPropertySets">
<EntityRules>
<EntityRule EntityName="IfcPropertySet"> Tkarrqolates
<AttributeRules>
<AttributeRule RuleID="Name_3" AttributeName="Name"> Zd)Ollt
<EntityRules> —
<EntityRule EntityName="IfclLabel" /> Subgraph
</EntityRules>
</AttributeRule>
<AttributeRule RuleID="HasProperties_4" AttributeName="HasProperties"> structures
<EntityRules>
<EntityRule EntityName="IfcPropertySingleValue">
<AttributeRules>
<AttributeRule RuleID="Name_5" AttributeName="Name">
<EntityRules>
<EntityRule EntityName="IfcIdentifier" />
</EntityRules>
</AttributeRule>
<AttributeRule RuleID="NominalValue_6" AttributeName="NominalValue">
<EntityRules>
<EntityRule EntityName="IfcValue" />
</EntityRules>
</Templates>
<Views>
<ModelView uuid="d305b4eb-b668-437a-a9ef-a9ce@d55aa2b" status="sample">
<Roots>
<ConceptRoot uuid="9ebbc4le-b172-474a-a45e-b862ddd423b8" name="IfcWall" status="sample"
applicableRootEntity="IfcWall">
<Concepts>
<Concept uuid="309fe979-2673-414a-a85b-b34b3b22fd03" name="Rule 1" status="draft" override="true">
<Template ref="d22c5deb-95d9-4686-800b-a23d292062c9" /> Rule
<TemplateRules operator=" and >
<TemplateRule Parameters="Name_3[Value]='Pset_WallCommon' AND Name_5[Value]='IsExternal' AND statements

NominalValue_6[Type]="'IfcBoolean'"/>
</TemplateRules>

</Views>
</mvdXML>

Fig. 1. An example mvdXML ruleset.

The above-mentioned studies focus on the fast validation of raw
data structures and value constraints to meet data exchange require-
ments. Compared with the code checking methods with enriched ge-
ometry calculation and semantic inferencing [10-13,35-38], the val-
idation methods for data exchange requirements tend to be more
lightweight. The rules are with limited functions concentrating on
the information units and constraints in exchange requirements. The
validation tasks are supposed to be performed on the receiving of data
models to check the correctness of the data structure and the sufficiency
of the content, and to ensure that the data meets the exchange require-
ments of subsequent automatic services [39]. The validation of raw
data structures and values can be a fast pre-checking process before
the enriched rule checking tasks to ensure the conformance of input
data [14,15].

The mvdXML is currently accepted as a mainstream ruleset format
that is widely used in BIM data validation and BIM software certifi-
cation. The mvdXML rules have close connections with the exchange
requirements and use cases in the IDM method, and can provide useful
information for both domain engineers and software developers. In this
paper, the proposed method uses mvdXML as input, and tries to find
speeding-up strategies for the validation of data structures and value
constraints of industrial data models.

2.2. The mvdXML ruleset

Currently, the most widely used version of mvdXML is V1.1 [9]. In
this paper, all the analyses and experimental comparisons are based on
mvdXML V1.1. An example mvdXML ruleset is shown in Fig. 1.

In an mvdXML ruleset, each MVD rule is composed of two parts: the
subgraph templates in the header part, and the rule statements (with
the logical interconnections between the statements) in the body part.

The subgraph templates are contained in the “<Templates>" part at
the beginning of the file. Each subgraph template is defined as a “<Con-
ceptTemplate>”" structure, which indicates a certain version of IFC
schema with the “applicableSchema” field, and indicates a root entity
node type with the “applicableEntity” field. Inside a “<ConceptTem-
plate>” structure, the nested “<AttributeRules>" and “<EntityRules>"
form the subgraph structure of the template. Each item in the “<En-
tityRules>” is a named type of node, including the entity node types
and the literal data types. Each item in the “<AttributeRules>" is a
named type of edge that starts from the current entity node type and
points to the next node type. The names of the edges are defined in
the IFC schema, including both the attributes directly recorded in the
IFC data nodes, and the inverse attributes for accessing the nodes where
the current node is referred to. One node can have several internal edge
definitions, and also one edge can point to several different node types.
Each edge may have a short “RuleID” string, so that the edge can be
referred to in the body part of the ruleset.

The rule statements are contained in the “<ModelView>" parts
at the body of the file. Inside of which, one “<ConceptRoot>" is
an executable rule consisting of several rule statements with logical
interconnections. The rule statements are in two groups: the appli-
cability rules and the constraint rules, both of which must refer to

“<ConceptTemplate>" tag by a UUID for obtaining the subgraph
structure information. The applicability rules are used for defining
the conditions to filter a fine-grained subset of the root entities of a
certain type, and the constraint rules are about the requirements for
the correctness and sufficiency of data structures and values, which are
applied to the subset nodes in the validation tasks.

The rule statements are written in the “mvdXML Rule Grammar”. A
statement is the logical combination of several clauses, and each clause
is usually composed of the following four parts.

H. Liu et al.

 RuleID reference: a reference to an edge in a “<AttributeRules>"
structure in the header part, standing for the data nodes that the
edge points to.

» Metric: the measures for making judgments on the nodes, includ-
ing “[Type]”, “[Value]”, “[Size]”, “[Exists]”, and “[Unique]”.

+ Operator: symbols for the comparison between the metric of
nodes and the values, including “=", “>”, “<”, “>=", “<=", “l=",

+ Value: the target value for comparison, which can be either a
string value, boolean value, numeric value, or a regular expres-

sion.

The logical combinations of the rule statements are in two forms.
Inside a rule statement, the interconnections (including “AND”, “OR”,
“XOR”, “NAND”, “NOR”, and “NXOR”) together with the brackets are
used to link the clauses. Outside of a rule statement, a nested XML
structure composed of “<TemplateRules>" with operators (“and”, “or”,
and “not”) is used for assembling the rule statements. The two forms of
logical combination are used in different phases in the MVD validation,
as shown in Section 2.3.

In addition to the subgraph templates and rule statements for au-
tomatic MVD validation, there is also information in natural language
in an mvdXML ruleset for describing the exchange requirements, spec-
ifying the severity level, and grouping the rules. Such human-readable
information is helpful in providing documents and instructions for the
MVD users in the data exchange process.

2.3. Automated MVD validation

Currently, automatic MVD validation has been implemented on sev-
eral software platforms, such as Solibri [40], EXPRESS Data Manager
(EDM) [41], Simplebim [42], Xbim [16,43], BIMserver [17,44], and
IfcOpenShell [18,19]. The tools can be roughly divided into two groups:
modularized MVD validation and generalized MVD validation.

The modularized MVD validation [15,40,42,45-47] is to implement
program modules for the commonly-used MVD rule types, so that the
users can perform the checking task by assembling the modules and
configuring the parameters. The modularized MVD validation is based
on the classification of MVD rule types. The mvdXML developer team
categorized the mvdXML-based automated validation tasks [8], such as
the existence of attributes, the size of collections, and the uniqueness of
values. Similar categorizations are also proposed in other studies [6,45—
47]. The modularized MVD validation is easy to understand by users
and is commonly adopted by commercial BIM checking tools [40,42].
However, it cannot support the validation of arbitrary MVD rules for
the IFC schema.

Generalized MVD validation [16-19] performs subgraph template
matching and rule constraint checking directly on the graph structure
of IFC data, and it is supposed to be able to support arbitrary mvdXML
rulesets. In performing the generalized MVD validation, the applica-
bility rules are checked before the constraint rules, and the filtered
nodeset from the applicability checking is used as the input nodeset
of the constraint checking.

In addition to mvdXML, there are also implementations of gen-
eralized model view checking based on other computer languages.
The EDM tool supports user-defined EXPRESS rules for model view
validation [41]. Several tools use SHACL for validating the linked
data models [14,32-34]. It is available to use SHACL to validate a
linked data model composed of several different schemas [33], for
example, a model using both IfcOWL [27] and BOT (Building Topology
Ontology) [48]. A comparison of the reviewed tools for automatic BIM
data conformance validation tools is listed in Table 1.

Due to the separation of subgraph templates and rule statements in
the mvdXML ruleset, the current implementations of generalized MVD
validation usually follow the matching-checking process. The major
steps of the matching-checking process are as follows.

Advanced Engineering Informatics 58 (2023) 102132

(a) Root nodeset acquisition. According to the root entity type of
the subgraph template, a root nodeset is found in the IFC data.

(b) Subgraph matching. Starting from each root entity in the root
nodeset, the subgraphs that match (or partially match) the tem-
plate are found and recorded.

(c) Rule statement checking on subgraphs. For each subgraph,
the rule statement is checked for obtaining the boolean re-
sult of this subgraph. (When the metrics “[Size]”, “[Exists]”
and “[Unique]” are used, the rule statement is checked on the
aggregation of several subgraphs.)

(d) Merging results to the root entity. One root entity can usually
have multiple matched subgraphs, and the boolean result of the
root entity is decided by the existence of a subgraph that returns
“TRUE” in the rule statement checking.

(e) Logical combination of the root entity results. For each root
entity, the boolean results from multiple rule statements are
combined into the final output boolean result according to the
logical operators in the nested “<TemplateRules>" structure.

In this validation process, two different types of logical operators are
used. The logical operators inside each statement are used in step (c)
for combining the clauses for different attributes in the same subgraph.
While the logical operators in “<TemplateRules>" tags are used in step
(e), which is the combination of boolean results for the root entities.

The complexity of the matching-checking process is mainly deter-
mined by the subgraph matching step and the rule statement checking
step. In the subgraph matching step, for a single root entity, there
are usually multiple subgraphs that can match the same template. For
example, if one root entity has multiple properties and each property is
an “IfcProperty” node, then for this root entity, the number of matched
subgraphs equals the number of properties. Typically, in checking a rule
statement on a root nodeset with »n entities, when the total number of
matched subgraphs for all the root entities is nm (i.e. each root entity
can match m subgraphs in average), and the subgraph template has p
attributes, then the complexity of the subgraph matching step is O(nmp).
In the rule statement checking step, let p’ be the number of attributes
in the statement, then the complexity is O(nmp’). Usually, only part
of the attributes will appear in a rule statement, and some attributes
may appear multiple times with logical interconnections, so p and p’
are considered to be in the same magnitude, and then O(nmp) can be
considered as the complexity of the whole matching-checking process.

The matched subgraphs are usually cached in some kinds of data
structures, in order that the found subgraphs can be reused in checking
multiple rule statements. For example, one implementation on the
Xbim [16] caches the found subgraphs for each root entity set in
a DataTable with size nmxp, in which each column stands for an
attribute in the concept template, and each row contains the node
values of a matched (or partially matched) subgraph. Some other
implementations [17,18] cache the edges in found subgraphs for each
root entity in a HashMap with size n x m X p, in which each root entity
points to a subgraph set, and each subgraph records the key-value pairs
of the attributes. The DataTable and HashMap structures may have
different speeds in reading and writing, but mathematically, they have
the same O(nmp) complexity in storing the subgraphs.

However, since the IFC model of a real-world project usually ex-
ceeds millions of nodes, with hundreds of megabytes of data, the
efficiency of MVD validation of large rulesets on real-world size models
is still a challenge. An MVD ruleset may contain thousands of rule
statements, and in checking one rule statement, the total number of
matched subgraphs nm may exceed several hundreds of thousands.

The matching-checking process faces the challenge of efficiency,
and the motivation of the MVDLite algorithm proposed in this paper
is based on the observations of the separated subgraph matching and
rule statement checking steps. First, there are usually common nodes in
multiple subgraphs with different root entities, which are visited mul-
tiple times in the matching-checking process. For example, if multiple

H. Liu et al.

Table 1
The comparison of 13 BIM data conformance validation tools.

Advanced Engineering Informatics 58 (2023) 102132

Tool name Ruleset format

Model schema Data storage dependency Algorithm type

Solibri Model Checker [40] (GUI configurations) IFC - Modularized
SimpleBIM [42] mvdXML-Excel IFC - Modularized
Modularized rule-based validation [45] Excel IFC - Modularized
IfcDoc instance validation [46] mvdXML IFC - Modularized
EXPRESS Data Manager [41] EXPRESS IFC - Generalized
Xbim mvdXML plugin [16] mvdXML IFC Xbim.Essentials® Generalized
mvdXML Checker [17] mvdXML IFC BIMserver” Generalized
mvdXML Checker [18] mvdXML IFC IfcOpenShell® Generalized
python-mvdXML [19] mvdXML IFC IfcOpenShell® Generalized
Linked-data based constraint-checking [32] SHACL IfcOWL RDFLib? Generalized
LBD Checker [33] SHACL 1fcOWL, BOT Apache Jena® Generalized
Validation of IfcOWL datasets using SHACL [34] SHACL IfcOWL Apache Jena® Generalized
ICDD SHACL validation [14] SHACL IfcOWL dotnetRDF' Generalized

ahttps://github.com/xBimTeam/XbimEssentials.

bhttps://github.com/opensourceBIM/BIMserver.

¢https://github.com/IfcOpenShell/IfcOpenShell.

dhttps://github.com/RDFLib/rdflib.

¢https://jena.apache.org/.

fhttps://github.com/dotnetrdf/dotnetrdf.

IfcPropertySet IfcProperty IfcValue IfcValue IfcPropertySet IfcProperty IfcPropertySet

o—L Oo—

[Value]>=0

->HasProperties

(a) Attribute segment.

(D
® -1

(b) Single metric segment.

[Size]>1

->HasProperties

(c) Collection metric segment.

Fig. 2. Examples of attribute segment and metric segments.

instances refer to the same resource node, this resource node (as well as
the property nodes linked to this resource node) would appear in the
matched subgraphs of all instances. Second, if the constraints in rule
statements are considered in the subgraph matching step, many false
branches can be pruned at early stages in node searching, which may
reduce the number of edges to visit.

Based on the above observations, the idea of the MVDLite algorithm
is to reduce the complexity by reorganizing the separated templates and
rule statements into an integrated searching process.

3. The MVDLite algorithm

In this section, the MVDLite algorithm is proposed for the fast
validation of MVD rules. First, the “rule chain” structure with several
types of “rule segments” is introduced (see Section 3.1). Second, the
algorithm for parsing the mvdXML ruleset and composing the rule
chain structure is proposed (see Section 3.2). Then, the round-trip
searching and filtering on the rule chain structure is introduced (see
Section 3.3). Finally, the deep-caching strategy is introduced to further
speed up the checking tasks on a large ruleset (see Section 3.4).

3.1. The rule chain structure

The rule chain is the rule structure used in the MVDLite algorithm
to integrate the subgraph templates, rule statements and logical inter-
connections. A rule chain is composed of a sequence of rule segments
starting from a root nodeset. One rule segment is the representation of a
mapping from the source nodeset to the target nodeset. In the sequence

of rule segments, the target nodeset of a former rule segment is the
source nodeset of the latter rule segment.

There are three types of rule segments: attribute segment, metric
segment and compound segment.

Attribute segment. An attribute segment is a mapping defined by
an attribute in the IFC data. Each attribute segment has an attribute
name and a target node type, corresponding to the “AttributeRule” and
“EntityRule” tags in mvdXML. Fig. 2(a) shows an example attribute
segment.

Metric segment. A metric segment is a mapping from the source
nodeset to itself, which works as a filter for the source nodes. Each
metric segment is with a metric ([Typel, [Value], [Sizel, [Exists], and
[Unique]), an operator (=, >, <, >=, <=, and !=) and a value constraint
(string, boolean, or numeric value), corresponding to the components
in the mvdXML Rule Grammar. Among the metric segments, the [Type]
and [Value] metrics are “single metric segments”, which can be eval-
uated by every single node in the nodeset, and act as filters for the
nodeset itself. Fig. 2(b) shows an example single metric segment. The
[Exists], [Size] and [Unique] are “collection metric segments”, which
can only be evaluated by a collection of nodes. A collection metric
segment is calculated together with its previous attribute segment (or a
compound attribute segment) and acts as a filter for the source nodeset
of the previous attribute segment. Fig. 2(c) shows an example collection
metric segment.

Compound segment. A compound segment encapsulates one or
more rule chains into brackets, so that it can be embedded into a
higher-level rule chain and can act as a single rule segment. There
are two different types of compound segments: compound attribute

https://github.com/xBimTeam/XbimEssentials
https://github.com/opensourceBIM/BIMserver
https://github.com/IfcOpenShell/IfcOpenShell
https://github.com/RDFLib/rdflib
https://jena.apache.org/
https://github.com/dotnetrdf/dotnetrdf

H. Liu et al.

IfcPropertySet IfcValue IfcValue
IfcProperty IfcProperty
->HasProperties ->Name [Value]="FireRating"

Advanced Engineering Informatics 58 (2023) 102132

IfcPropertySet

IfcPropertySet IfcPropertySet

(->HasProperties->Name [Value]="FireRating")

(a) Compound metric segment.

IfcObject IfcRelDefinesByType IfcTypeObject IfcPropertySet
/ \ IfcObject IfcPropertySet
->IsTypedBy O
->RelatingType ->HasPropertySets |:>
OR

->RelatingPropertyDefinition ,O

->IsDefinedBy O
\ J (->IsTypedBy->RelatingType->HasPropertySets

IfcRelDefinesByProperties

IfcPropertySet

OR ->IsDefinedBy->RelatingPropertyDefinition)

(b) Compound attribute segment.

Fig. 3. Examples of compound rule segments.

segment and compound metric segment. A compound metric segment
encapsulates the filter result of the source nodeset, and acts as a single
metric segment, as shown in Fig. 3(a). A compound attribute segment
encapsulates the paths between the source nodeset and the target
nodeset, and acts as a single attribute segment, as shown in Fig. 3(b).
Each sub-chain in a compound metric segment must end with a metric
segment, and each sub-chain in a compound attribute segment must
end with an attribute segment. A compound segment can also be nested
inside another compound segment, and it acts as a corresponding
attribute segment or metric segment, so that the searching and filtering
on subgraphs with branches can be supported.

Inside a compound segment, several sub-chains can be combined
with logical interconnections (AND, OR, NOT), which correspond to the
intersection, union and complement operations of the target nodesets.
Specifically, since each metric segment can be viewed as a filter of
its source nodeset, the AND operation of metric segments can also be
represented as the series connection of metric segments.

Each rule segment is named with a string, which indicates the
operation of the rule segment, and performs as a command to the
program for seaching and filtering. As a result, a rule chain can be
uniquely identified by linking the strings of all segments. An attribute
segment is named with “->” followed by the attribute name, and the
optional entity type rule can be linked afterward with a “:”, such as
“.>Name:IfcLabel”. A metric rule is named with the metric name, an
operator and a value constraint in order, such as “[Value]=TRUE”. A
compound segment is named with exterior brackets, inside which are
the strings of the interior rule chains and logical interconnections.

Fig. 4 shows a rule chain structure generated from an mvdXML rule
statement. The meaning of this rule is that if a property “IsExternal” in
property set ‘“Pset WallCommon” is assigned to an “IfcWall” instance,
then the value type should be “IfcBoolean”.

3.2. Composing the rule chain from the mvdXML ruleset

The MVDLite algorithm uses mvdXML as the input ruleset, and
each rule statement is parsed into a rule chain structure according to

the referred subgraph template, as shown in the pseudo-code of the
“GenerateRuleChain” function in Algorithm 1. Fig. 5 shows the steps
for composing the rule chain from the mvdXML ruleset.

The input of the “GenerateRuleChain” is the subgraph template T
and the rule statement R. The rule statement is composed of tuples of a
logical interconnection u and a sub-clause S. Each sub-clauses can either
be a tuple of a RuleID v and a value constraint w, or an internal rule
statement encapsulated in brackets. Let the first logical interconnection
be NULL, since the number of sub-clauses is always larger than the
number of logical interconnections by one.

The algorithm starts with an empty rule chain ¢, and iterates
through all sub-clauses in the rule statement. When the sub-clause is a
tuple (v, w), the RuleID v corresponds to a series of attribute segments
by the function “GetAttributeSegChain”, and the value constraint w
corresponds to a metric segment by the function “GetMetricSeg”. The
attribute segments are the instructions to search from the root nodeset
to the target nodeset, and the metric segment is added to the end
of the attribute segments for filtering the target nodeset, to form a
branch of the rule chain. When the sub-clause is an internal rule
statement encapsulated in brackets, the algorithm recursively calls the
“GenerateRuleChain” function to generate a sub-chain for the internal
rule statement, which is also regarded as a branch of the rule chain.

In the iteration of the sub-clauses, the lowest-common-ancestor
attribute between the current rule chain and the newly-returned branch
is calculated with the function “GetLowestCommonAncestor”. Then
the two branches are merged into one rule chain by the function
“MergeRuleChains”. The merged chain has a shared prefix, and the
suffix branches with interconnections are wrapped into compound
segments. Specifically, when several compound metric segments are
combined with “AND”, they can also be connected as a series of
compound metric segments, which means that the nodes should pass
through all the filters.

H. Liu et al.

IfcWall

.

->IsTypedBy:
IfcRelDefinesByType

'

->RelatingType:
IfcTypeObject

! -

Advanced Engineering Informatics 58 (2023) 102132

->HasPropertieSets:
IfcPropertySet

A 4

->Name:
IfcLabel

[Value]
='Pset_WallCommon'

' -

->HasProperties:
IfcPropertySingleValue

A 4

->Name:
IfcLabel

[Value]
='IsExternal'

v

->NominalValue:
IfcValue

!

[Typel
='IfcBoolean'

Fig. 4. An example rule chain structure with its string identification.

O—~®—E®—0—0®
* ©
Subgraph Template

Lowest-common-ancestor

oee@

C="xxx' AND E='yyy'

Rule Statement

Branches AND

O~@®—@+@—®~{=vrv"]
4
O~@—-@~-{I {0

Rue — — — — —%
Chain ! P
©

Fig. 5. Steps for composing the rule chain from the mvdXML ruleset.

3.3. Performing validation on the rule chain

In Algorithm 2, a round-trip searching is performed based on the
rule chain to get the validation results. A rule chain is a series of
instructions for finding and filtering the nodes. Starting from the root
entity set, a round-trip searching is performed: first go forward through
the chain to find the existence of the paths which can pass all the rule
segments, and then trace back to find the root entity nodeset where
these paths started.

According to the instructions on each rule segment, the result of
each segment is a mapping between two nodesets, either a forward
mapping to the succeeding nodeset by an attribute segment, or a

Algorithm 1 GenerateRuleChain

Input: template T, rule statement R
1: rule chain ¢ « NULL
2: for tuple (interconnection u, sub-clause S) in R do

3: if S is another rule statement R’ in brackets then
4 ¢/ « GenerateRuleChain(T, R’)
5. else
6: S is tuple (RuleID v, value constraint w)
7: ¢/ « GetAttributeSegChain(v, T)
8: ¢’ « ¢+ GetMetricSeg(w)
9: end if
10: if ¢ = NULL then
11: ce—c
12: else
13: x < GetLowestCommonAncestor(c, ¢’)
14: ¢ < MergeRuleChains(c, ¢/, x, u)
15: end if
16: end for
Output: ¢

filter pointing to a subset of the current nodeset by a metric segment.
When a segment is a compound segment, each inner branch is a sub-
chain starting from the current nodeset, so “SearchOnRuleChain” is
recursively called for each branch, and the combined result acts as a
mapping between two nodesets in the host chain.

The behaviors of the sub-processes in Algorithm 2 are as follows.

+ “FindSucceedingNodes”: Given a current nodeset n;, an attribute
segment s;, and the whole data graph G, the function searches
starting from the current nodeset to find the succeeding nodeset
according to the attribute name and target entity type defined in
the attribute segment, and returns the found nodeset.
“FilterNodes™: Given a current nodeset n;, and a metric segment
s;, the function filters the current nodeset and returns a subset
that conforms to the constraint.

H. Liu et al.

Algorithm 2 SearchOnRuleChain

Input: root nodeset n;, rule chain ¢, data graph G
1: for segment s; in ¢ do

if s; is an attribute segment then

3 n;,; < FindSucceedingNodes(n,, s;, G)

4: else if s; is a metric segment then

5 n;, < FilterNodes(n;,s;)

6: else if s; is a compound metric segment then

7

8

9

Ny <9
for tuple (interconnection u, branch ¢’) in's; do
n’ < SearchOnRuleChain(n;, ¢/, G)

10: n;,; < CombineNodeset(n;,;,n’,u)
11: end for

12: end if

13: end for

14: if s}, is a metric segment then

15: ng, < Backtrack(c, nj,g.ng)

16: else

17: ngy < Ny, //only inside of a compound attribute segment
18: end if

Output: n

» “CombineNodeset”: Given two nodesets n and n’, and an intercon-
nection u, the function returns the corresponding boolean result
of the nodesets.

“Backtrack”: Given a rule chain ¢, the last nodeset ny, in its
searching result, and the root nodeset n;, the function traces back
through the mappings found by the rule segments, to find the root
entities as the starting points of the paths that can pass all the rule
segments, and returns the found subset of the root nodeset.

Fig. 6 compares the round-trip searching algorithm on the rule chain
with the matching-checking process in MVD validation.

Fig. 6(a) shows the matching-checking process in checking a rule
statement, as introduced in Section 2.3. Starting from the root entity
set, in the matching step, each root entity is likely to have multiple
matched subgraphs. The rule is checked on each subgraph, and the
existence of a subgraph that can pass the rule constraint decides the
validation result of the one root entity.

In comparison, Fig. 6(b) shows the round-trip searching on the
rule chain in the MVDLite algorithm. Rather than traversal subgraph-
by-subgraph according to the template matching result, the MVDLite
algorithm is able to find the results of all subgraphs through one
single turn of round-trip searching starting from the root nodeset. The
nodes and edges tend to appear in multiple subgraphs, and be checked
multiple times. While in the round-trip searching, each edge is visited at
most twice, which tends to be more efficient in the calculation. Detailed
discussions about the complexity of the algorithm are presented in
Section 5.1.

3.4. The deep-caching strategy

For the checking task on a large ruleset with multiple rules, the effi-
ciency of the MVDLite algorithm can be further improved by applying
the “deep-caching” strategy. Based on the correspondence between the
rule chain structure and a prefix string, the checking results can be
reused across multiple rules.

By naming each rule segment with a string, the whole rule chain
corresponds to a string record by linking the strings of all segments, and
then each prefix of a rule chain corresponds to a prefix of the string, as
shown in Fig. 4. The deep-caching strategy records the correspondence
so that a previously visited nodeset can be re-found according to the
prefix string of a rule chain.

Advanced Engineering Informatics 58 (2023) 102132

As a result, rather than starting from the root nodeset every time,
the algorithm can start from a visited nodeset with the longest common
prefix. In a large ruleset, there are usually multiple rules with a
common prefix. For example, all rules for checking the type properties
of an “IfcWall” instance should have the common prefix “IfcWall -
>IsTypedBy: IfcRelDefinesByType ->RelatingType: IfcTypeObject
->HasPropertieSets: IfcPropertySet”, so the nodeset of the correspond-
ing “IfcPropertySet” nodes can be reused across the rules. In our
experiments, the deep-caching strategy is effective in speeding-up
without significantly increasing memory usage.

4. Experiments
4.1. Experiments setup

In this section, the performance of the proposed MVDLite algo-
rithm is compared with several matching-checking tools on models and
rulesets in different sizes.

(1) The compared tools.

Among the four generalized MVD checking tools supporting
mvdXML listed in Table 1, the mvdXML Checker on IfcOpenShell [18],
the python-mvdXML [19] and the Xbim MVD plugin [16] are selected
for comparison.

The mvdXML Checker on IfcOpenShell [18] and mvdXML Checker
on BIMserver [17] have similar core algorithm codes in Java that are
based on HashMap caching, and the mvdXML Checker on IfcOpenShell
is selected because it is newer that supports the released mvdXML
version. For each root entity, several HashMaps are used to cache
the matched subgraphs, and each HashMap records the values of the
attributes in a subgraph.

The python-mvdXML [19] is another implementation based on If-
cOpenShell, and the core algorithm codes are in Python. The python-
mvdXML tool also uses HashMap (dictionary) for subgraph caching.

The Xbim mvdXML plugin [16] is implemented in C# with DataT-
able caching for matched subgraphs. One root entity corresponds to
several rows in the DataTable, and each row records the values of the
attributes in a subgraph. The rule statements are validated by querying
the cached rows in the DataTable.

The MVDLite tool is implemented in C# based on an IFC model
reader named “STEParser”. The MVDLite algorithms with and without
the deep-caching strategy are compared, which tests the effect of the
deep-caching strategy on rulesets with multiple rules. For a fair com-
parison, our own matching-checking implementation with HashMap
caching on the same STEParser tool is also tested.

On testing the tools, the time used for loading and parsing IFC data
is excluded. For all the tools, the functions to export complex results
(such as generating detailed reports with screenshots) are closed, and
each tool just exports a plain text report or a simple JSON result file,
so that the time used in checking can be fairly compared.

(2) Models. Several IFC4 models in different sizes are used. The
models are shown in Fig. 7, and the sizes of these IFC models are listed
in Table 2.

» Duplex.ifc A small sample model of a duplex building provided
by NIBS [49]. This model is converted and merged from two
IFC2X3 models to one IFC4 model, including an architectural
model and an MEP model.

Office.ifc A medium-size sample model of an office building
provided by NIBS [49]. This model is converted and merged from
three IFC2X3 models to one IFC4 model, including an architec-
tural model, a structural model, and an MEP model.

BO1.ifc A model of the BO1 underground storey of a commercial
complex building. This model is exported from Autodesk Revit,
which includes building elements in architecture, structure, and
MEP disciplines.

H. Liu et al. Advanced Engineering Informatics 58 (2023) 102132

C="xxx"' AND E='yyy'

(1) Get the root entity set. (2) For each root entity, list all (3) Validate the rule (4) Get the result of
subgraphs according to the template. on each subgraph. one root entity.

(a) The matching-checking process.

->A ->B (->C ="xxx') ->D ->E ='yyy'

A B C C B D E E

(1) Get the root entity set. (2) Filter the nodes through the rule chain. (3) Backtrack to get the results
of all root entities.

(b) The round-trip searching on the rule chain in the MVDLite algorithm.

Fig. 6. The comparison of two types of MVD rule validation algorithms.

* UnitTest.mvdxml A small unit test ruleset with 58 statements
about walls, which is used as the ruleset for unit test in the Xbim
mvdXML validation tool [16].

Table 2 _ , - RV.mvdxml The IFC4 Reference View V1.1 draft with 1770
The size of models in the experiments. ided by buildineSMART [50
Duplex.ifc Office.ifc BOL.ifc statements, provided by buildingSMART [50].)
+ DTV.mvdxml The IFC4 Design Transfer View V1.1 draft with
File size 52 MB 193 MB 841 MB . .
“IfcElement”s 1170 7174 57,344 1791 statements, provided by buildingSMART [50].
“IfcProperty”’s 76,118 476,900 1,434,337
“IfcShapeModel”’s 2029 11,095 89,735 The rulesets are chosen in the experiments because they are open-
Data lines 864,327 3,024,817 11,652,719 accessible and cover various features of MVD rules. The “UnitTest”
ruleset is small but with various types of rules for testing different
checking functions in the Xbim mvdXML tool. The “RV” and “DTV”
(3) Rulesets. Three mvdXML rulesets based on IFC4 are used in the rulesets are relatively large and among the most-used MVD rulesets
validation experiments. provided by buildingSMART.

H. Liu et al.

Advanced Engineering Informatics 58 (2023) 102132

Table 3
Time usage in MVD validation tasks (in seconds).
Models Rulesets Tools
(a) MVDLite (b) MVDLite without (c) matching-checking (d) mvdXML-Checker (e) python-mvdXML (f) Xbim mvdXML
deep-caching on STEParser IfcOpenShell [18] IfcOpenShell [19] plugin [16]
UnitTest 0.4 0.5 1.3 2.5 2.0 2.4
Duplex.ifc RV 1.3 2.0 11.2 21.1 170.1 7.1
DTV 1.4 2.0 11.5 21.6 118.5 6.0
UnitTest 0.8 1.5 5.8 8.6 14.1 177.3
Office.ifc RV 6.0 9.7 88.5 97.0 658.8 185.7
DTV 6.0 10.3 84.5 107.9 1137.0 178.3
UnitTest 5.0 13.1 49.8 55.8 351.6 10,745.1
BO1.ifc RV 73.2 126.7 388.9 480.6 5798.1 8,722.8
DTV 68.6 123.9 393.5 613.7 Fail 8,707.5

(a) Duplex.ifc

(b) Office.ifc

(c) BOl.ifc

Fig. 7. The models used in the experiments.

4.2. Experimental results

Table 3 shows the time usage of the tools in MVD validation tasks,
with minimum values in bold. All the experiments are performed on
a PC with a 3.60 GHz processor and 32 GB of physical memory. All
the algorithms run on a single core of the processor. In column (e),

10

the python-mvdXML fail to finish the checking task of “DTV” on the
“B01.ifc” model, because of the out-of-memory error.

For all the compared matching-checking tools, the number of en-
tries in the data structures to cache found subgraphs and attributes
are O(nmp), which decides the basic time and space complexity in
subgraph matching. The differences in the algorithm implementations
to access data and process filter rules also contribute to the difference
in executing time. The experimental results show that the efficiency
of the Xbim tool in column (f) declines remarkably with the increase
of the model size, and the efficiency of the python-mvdXML tool in
column (e) declines remarkably with the increase of the ruleset size.
The other two matching-checking tools shown in columns (c) and (d)
have more balanced performance in tasks with different sizes of models
and rulesets, and the time usages of the two tools are of the same
magnitude in each task. Considering that the implementation of the
MVDLite algorithm is based on the STEParser tool, it is proper to regard
the result in column (c) as a baseline of performance.

The experimental results show that the MVDLite algorithm is signif-
icantly faster than the matching-checking tools in all tasks. Comparing
the results in columns (a) and (c) in Table 3, the speed-up scales
between 3 times to 14 times are achieved by the MVDLite algorithm.
The results in columns (a) and (b) show that the deep-caching strategy
can improve the performance of MVD validation on rulesets with
multiple rules. By saving and reusing the visited prefixes on the rule
chain in checking multiple rules, the time consumption can be reduced
by around 40%.

5. Discussions

In this section, the discussions about the MVDLite algorithm are
presented. First, the complexity of the MVDLite algorithm is provided,
and compared with the matching-checking algorithm (see Section 5.1).
Second, the applicable scope of the MVDLite algorithm is discussed,
which is about the scope where the speeding-up strategies can be used
(see Section 5.2). The discussions are supposed to explain the efficiency
of the MVDLite algorithm, and to provide some ideas for keeping the
fast validation of MVDs in future updates of the MVD technology.

5.1. The complexity of MVDLite algorithm

The complexity of the round-trip searching in the MVDLite algo-
rithm is O(e), in which e is the number of visited edges in the searching,
and each edge is visited at most twice (forward and backward in a
round-trip). In the rule chain, the number of nodes is not greater than e,
and the number of metric segments on each nodeset is a small constant
integer, so O(e) can be considered as the complexity of the whole
MVDLite algorithm.

In comparison, the complexity of the matching-checking method
is O(nmp), as shown in Section 2.3. In this section, the DataTable
structure is used to describe the process of subgraph matching, and

H. Liu et al.

to explain the comparison between the complexity of the matching-
checking method and that of the MVDLite algorithm. The formulas to
describe the subgraph matching process are shown as follows.

The subgraphs stored in a DataTable can be regarded as a matrix.
In the matrix, each column stands for an attribute (with the first row
as the root entities), and each row stands for a matched (including
partially matched) subgraph. Since the template is a tree structure, the
attributes can be sorted with topological sorting, so that all prefixes of
any attribute are ranked before itself. For a template with p attributes
(regarding the root entity set as the first attribute), let f(i) be the index
of the direct prefix of the ith attribute, 1 < f(i) <i < p.

With the sorted attributes, the subgraph matching process can be
regarded as the expansion of the DataTable starting from a one-column
DataTable containing the root entities. An attribute stands for an in-
struction to find the edges from a source nodeset to a target nodeset.
When scanning a new attribute in the subgraph matching process, the
source nodeset comes from a column in the current DataTable, and
the found target nodeset will be appended to the DataTable as a new
column.

Let K© be the recorded DataTable after scanning the ith attribute,
which is a matrix with the size k; X i, and k; is the number of matched
subgraph prefixes. In particular, K is with size nx 1, and K® is with
size nmxp, in which k; = n is the size of root entity set, and k, = nm is
the total number of subgraphs. In scanning the ith attribute, the source
nodeset is from the f(i)th column, and each current subgraph is to be
expanded to one or more new subgraphs according to the number of
target nodes linked to the corresponding source node.

The following two sequences of arrays are defined to describe the
attribute scanning process, which is useful in the following analysis of
complexity. Let n) be the non-repeated nodeset of the ith attribute.
Specifically, the size of the root nodeset |[n("| = n. Let q) be the number
of succeeding edges in scanning the ith attribute for each node in n/®,
with |q(f)| = |n(f(i>)|_

Specifically, if some source nodes do not have succeeding edges, the
subgraphs are kept in the DataTable as partially-matched subgraphs by
appending a null node. This means that the minimum value in q% is 1.

Fig. 8 is a diagrammatic example of the subgraph matching process.

» Fig. 8(a) shows a template with 3 attributes. In this case, the
prefix indices are f(2) =1 and f(3) = 2.

+ Fig. 8(b) shows the graph data to be matched.

* Fig. 8(c) shows the change of DataTable K® in the subgraph
matching process.

» Fig. 8(d) shows the arrays for describing the attribute scanning
process. It is seen that each n® is a description for the target
nodeset of the ith attribute. Each q) is a description for the edges
found by the ith attribute, which is between the nodesets n'/®)
and n®,

Based on the above definitions, the comparison of the complexity
of the two algorithms is provided in Theorem 1 below.
Theorem 1. e < nmp.
Proof. In the matching-checking method, let k) be the jth column of
K®, in which each item is from n¥) and may repeat several times. Let
r/) be the array of repeating times for the nodes in k'), and the size
[r@)| = |n|. In scanning the ith attribute, for each node in k(~1/®)
every succeeding edge corresponds to a new matched subgraph prefix,
so the number of rows k; is

k; = (=150 . g 1
The partially-matched subgraphs are kept in the DataTable, which
keeps k;_; < k;.
In the MVDLite algorithm, since the value constraints are evaluated
during the searching, some of the nodes are excluded before scanning

11

Advanced Engineering Informatics 58 (2023) 102132

the next attribute. Let h) be a mask array for n”, in which kept nodes
are marked with 1 and excluded nodes are marked with 0. In scanning
the ith attribute, the number of visited edges e; is

e, = h/® . ¢, 2

Specifically, with regarding the root entity set as the first attribute,
e; = k, = n. Since every item in r~1./® is not less than 1, and every
item in hU@ is not greater than 1, then e; < k;. As a result,

eiSZki

1 i=1

P

e= k,=nmp. []

™-

3

<
i

i i=1

Theorem 1 indicates that the complexity of the MVDLite algorithm
is not greater than the matching-checking method. The two “<” signs
in Eq. (3) imply that in the worst cases, the complexities are equal. The
conditions that the two “<” signs get equal can be summarized as the
following points.

(a) Each root entity matches only one subgraph.

(b) No repeated nodes among multiple matched subgraphs.

(c) No excluded nodes by any value constraint before the last seg-
ment of a path.

The first “<” sign gets equal only when every item in r@~—1/@) and
h/® equals 1, which corresponds to conditions (b) and (c), respec-
tively. The second “<” sign gets equal only when every k; = k, = n,
which corresponds to condition (a).

In real-world models, the above three conditions are often violated.
Three corresponding examples are given as follows.

(a) One root IfcObject node refers to multiple properties, and each
property corresponds to a matched subgraph.

(b) Many root IfcObject nodes refer to a single IfcTypeObject node,
and the single node would appear in multiple matched sub-
graphs.

(c) One root IfcObject node refers to multiple properties in different
property sets, but a filter rule keeps only the properties in a
certain property set.

As a result, the two “<” signs usually make significant differences
in real-world MVD validation tasks, which remarkably speeds up the
calculation.

5.2. The applicable scope of the MVDLite algorithm

The speeding-up strategies in the MVDLite algorithm can be sum-
marized as the following three points.

(a) Reordered node searching and filtering operations. The
value constraints are evaluated during the searching so that
some nodes can be excluded before scanning the next attribute.
Logical interconnections on lowest-common-ancestors. The
interconnections of attributes are performed as the correspond-
ing intersection, union, or complement operations on the lowest-
common-ancestor nodeset of the branches.

Merged nodeset. The redundant nodes in multiple subgraphs
are merged into one nodeset in the rule chain, which reduces the
calls for node filtering.

(b

(o)

Strategies (a) and (b) rely on the tree structure of the subgraph
template in the mvdXML ruleset, and the fact that the checking results
of all the subgraphs need to be pushed back to get the result of each
root entity. A tree-shaped template ensures the following conditions
that support the round-trip searching on the rule chain. In the forward-
searching stage, a tree-shaped template ensures that the branch pruning
can be performed. In the backward tracing stage, when a node has
succeeding paths that can pass all the rule segments, it must be on
the path tracing back to the root entities. For two attributes, the

H. Liu et al.

(a) The subgraph template.

KO K® KO
al al | bl al | bl | cl
a2 al | b2 al | bl | c2
a2 | b2 al | b2 | c2
a2 | b3 al | b2 | c3
a2 | b2 | c2
a2 | b2 | c3
a2 | b3 | c4

(c) Change of the DataTable K in the subgraph matching process.

Advanced Engineering Informatics 58 (2023) 102132

(b) The graph data.

n(® n® n®
al bl cl
a2 b2 c2
b3 c3
q(2) q(3) c4
2 2
2 2
1

(d) The arrays for describing the attributes and edges.

Fig. 8. A diagrammatic example of the subgraph matching process.

interconnection can be performed on the sub-subgraphs rooted with
the lowest-common-ancestor nodeset, and the result can then be pushed
back to the upper root entities.

Strategy (c) relies on the current fact that the MVD rules ignore the
order of nodes in a node collection, and ignore the repeating times of a
node in different matched subgraphs. In the node searching according
to an attribute name in the mvdXML template, an attribute that can
match multiple succeeding nodes in different subgraphs may be in
either of the following cases.

» An attribute defined as a “SET” or a “LIST” of nodes in the IFC
schema.

 An attribute defined as a nested collection of nodes in IFC schema,
such as “LIST OF LIST OF ...".

* An inverse attribute in IFC schema, and the current node can be
referred to in multiple source nodes.

The speeding-up strategies of MVDLite closely rely on the above-
mentioned characteristics of the mvdXML ruleset, and such character-
istics are based on the origin of MVD rules from the IDM information
units. An information unit is the natural language description of the
data exchange requirement of a domain entity or an attribute of a
domain entity [21]. The domain entity corresponds to a root nodeset
in MVD rules, and the attribute corresponds to a path starting from the
root node to reach the required attribute node. Hence the path patterns
are naturally combined into a tree-structured subgraph template. In
subgraph matching, the order of searching different branches is not
important, and the found subgraphs are without an order. Hence the
merged unordered nodeset is applicable in the algorithm.

The mvdXML ruleset format is designed to fit the validation tasks
of the IDM information units. The nested XML structure in “<Con-
ceptTemplate>" makes the template be in a tree structure in most
cases. However, the two exception cases “RuleID overloading” and
“multi-RuleID clause” may result in a non-tree structure.

12

The “RuleID overloading” allows that one same RuleID may be
assigned to different branches in the template, which represents sev-
eral alternative paths in searching a nodeset. Some operations can
be used to handle this case. First, a complex template with RuleID
overloading can be split into a collection of optional templates in the
tree shape. Second, the alternative paths in searching a nodeset may
also be represented with the compound attribute segment in the rule
chain structure. The first operation requires that the metrics can be
independently evaluated in the collection of matched subgraphs for
each optional template. The second operation requires that the node
searching and filtering on each branch of the compound attribute
segment are independent.

The “multi-RuleID clause” allows that on the right side of the
operator, not only the values but also the RuleID-metric pairs can be
used, such as “Inst_ObjectType[Value] = Type_ObjectType[Value]” for
checking that the “ObjectType” of an instance node is the same as that
of its type node. This can be handled by regarding the clause as a filter
for the lowest-common-ancestor nodeset of the branches, but only when
the node searching and filtering on each branch are independent.

Currently, although some extreme cases can be constructed, most of
the domain concept definitions and data constraints can be represented
in or converted into tree-shaped templates. The rules about ordered
repeatable node collections are not involved in the current mvdXML
format, and the searching and filtering results on the subgraphs are
always pushed back to get the result of each root node, hence the
fast searching and filtering strategies in MVDLite are applicable. The
mvdXML method is still in evolution. The discussions in this section
intend to provide some ideas for the future development of MVD
technology, so that the fast validation of industrial data models can
keep being supported when new features are added.

H. Liu et al.

6. Conclusion and future work

The MVDLite algorithm proposed in this paper uses the rule chain
structure to integrate the data templates and the value constraints
from the mvdXML ruleset. By performing the round-trip searching on
the rule chain structure, the MVDLite algorithm remarkably speeds up
MVD validation. In a typical task, the time usage may reduce from
minutes to seconds, or from around an hour to several minutes. The
comparison between the complexity of the MVDLite algorithm and that
of the matching-checking method is provided. The complexity analysis
supports that the MVDLite algorithm is faster in most real-world cases
with fewer redundant visits of edges.

The speeding-up strategies of the MVDLite algorithm are based on
the characteristics of the mvdXML ruleset, which can be summarized
as rooted tree-shaped subgraph templates, and ignoring the order and
repetition of nodes in subgraph matching. Such characteristics of the
mvdXML ruleset fit the validation tasks for the IDM information units,
in which domain concepts and attributes are mapped to root nodesets
and attribute paths, respectively. The speeding-up of the MVD vali-
dation tasks is beneficial in promoting the IDM-MVD method in the
industry. A fast checking of data structure and information sufficiency
is helpful in the data exchange to support downstream BIM-based
applications.

Based on the discussions of the proposed fast MVD validation algo-
rithm, there are several potential research topics for future work.

The first topic is to explore the applicability of the MVD technology
in more flexible scenarios. The MVD ruleset plays a role as a bridge
between the domain concepts in natural language and the raw data
structure in the IFC schema. With the ability of fast finding the nodeset
according to the applicability rules and fast accessing the required
attributes according to the paths, the MVD validation algorithm may
also be used in some more flexible scenarios, such as information query
and partial data extraction from the model. Such applications may be
helpful in the data preparation for the downstream BIM-based software
tools.

The second topic is to extend the algorithm to linked building data
applications. With an observation on the SHACL rules, it has a similar
subgraph template structure as the mvdXML ruleset with root nodes
and attribute paths. It may be a potential research topic whether a
formal mapping can be found between mvdXML and SHACL, in order
to apply the speeding-up strategies on the validation of linked building
data.

In addition, the discussions on the speeding-up strategies intend to
bring some new ideas to the community about the future evolution of
the MVD technology, as well as other technologies for fast validation of
industrial data models. The borderline between fast data conformance
validation algorithms and powerful enriched checking and inferencing
algorithms may be defined in future research, so that the speeding-up
strategies can be kept, and the two types of algorithms can collaborate
to support various applications.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

Except for part of the confidential data, the links to other data
resources have been added. The code is not permitted to be shared for
now, but would be ready for open source in the future

13

Advanced Engineering Informatics 58 (2023) 102132
Acknowledgments

This work was supported in part by the 2019 MIIT Industrial
Internet Innovation and Development Project ‘“BIM Software Industry
Standardization and Public Service Platform” and the National Key

Research and Development Program of China (2021YFB1600303).
References

[1]1 buildingSMART, Industry foundation classes IFC4 official release, 2013,
Available from: https://standards.buildingsmart.org/IFC/RELEASE/IFC4/FINAL/
HTML/ (accessed January 2022).
J. Wix, J. Karlshoej, Information Delivery Manual: Guide to components and
development methods, 2010, Available from: https://standards.buildingsmart.
org/documents/IDM/IDM_guide- CompsAndDevMethods-IDMC_004-v1_2.pdf (ac-
cessed January 2022).
R. See, J. Karlshoej, D. Davis, An integrated process for delivering IFC based data
exchange, 2012, Available from: https://standards.buildingsmart.org/documents/
IDM/IDM _guide-IntegratedProcess-2012_09.pdf (accessed January 2022).
[4] J. Hietanen, IFC Model View Definition Format, Technical document,
International Alliance for Interoperability, 2006.
buildingSMART, MVD database, 2022, Available from: https://technical.
buildingsmart.org/standards/ifc/mvd/mvd-database/ (accessed January 2022).
Y.-C. Lee, C.M. Eastman, W. Solihin, An ontology-based approach for developing
data exchange requirements and model views of building information modeling,
Adv. Eng. Inform. 30 (3) (2016) 354-367.
S. Son, G. Lee, J. Jung, J. Kim, K. Jeon, Automated generation of a model view
definition from an information delivery manual using idmXSD and buildingsmart
data dictionary, Adv. Eng. Inform. 54 (2022) 101731.
M. Weise, mvdXML requirements and examples: review of a standardized format
to define and exchange model view definitions with exchange requirements
and validation rules, 2014, Available from: https://github.com/BuildingSMART/
mvdXML/tree/master/mvdXML1.1 (accessed January 2022).
T. Chipman, T. Liebich, M. Weise, mvdXML: Specification of a standardized for-
mat to define and exchange model view definitions with exchange requirements
and validation rules, 2016, Available from: https://standards.buildingsmart.
org/MVD/RELEASE/mvdXML/v1-1/mvdXML_V1-1-Final.pdf (accessed January
2022).
P. Pauwels, D. Van Deursen, R. Verstraeten, J. De Roo, R. De Meyer, R. Van de
Walle, J. Van Campenhout, A semantic rule checking environment for building
performance checking, Autom. Constr. 20 (5) (2011) 506-518.
P. Pauwels, S. Zhang, Semantic rule-checking for regulation compliance checking:
An overview of strategies and approaches, in: 32rd International CIB W78
Conference, 2015.
T.H. Beach, Y. Rezgui, H. Li, T. Kasim, A rule-based semantic approach for
automated regulatory compliance in the construction sector, Expert Syst. Appl.
42 (12) (2015) 5219-5231.
H. Zhang, W. Zhao, J. Gu, H. Liu, M. Gu, Semantic web based rule checking
of real-world scale BIM models: a pragmatic method, in: International Congress
and Conferences on Computational Design and Engineering (I3CDE), 2019, pp.
130-137.
P. Hagedorn, M. Konig, Rule-based semantic validation for standardized linked
building models, in: Proceedings of the 18th International Conference on
Computing in Civil and Building Engineering: ICCCBE 2020, Springer, 2021, pp.
772-787.
C. Eastman, J.-m. Lee, Y.-s. Jeong, J.-k. Lee, Automatic rule-based checking of
building designs, Autom. Constr. 18 (8) (2009) 1011-1033.
xBimTeam, XbimMvdXML, 2016, Available from: https://github.com/xBimTeam/
XbimMvdXML (accessed January 2022).
opensourceBIM, mvdXMLChecker, 2014, Available from: https://github.com/
opensourceBIM/mvdXMLChecker (accessed January 2022).
J. Oraskari, C. Zhang, mvdXML Checker, 2021, Available from: https://github.
com/jyrkioraskari/mvdXMLChecker (accessed January 2022).
opensourceBIM, python-mvdxml, 2019, Available from: https://github.com/
opensourceBIM/python-mvdxml (accessed May 2023).
International Standards Office, ISO 10303-11:2004 Industrial Automation Sys-
tems and Integration - Product Data Representation and Exchange - Part 11:
Description Methods: The EXPRESS Language Reference Manual, ISO, Geneva,
Switzerland, 2019.
International Standards Office, ISO 29481-1:2016 Building Information Models -
Information Delivery Manual - Part 1: Methodology and Format, ISO, Geneva,
Switzerland, 2019.
International Standards Office, ISO/TS 15926-11:2023 Industrial Automation
Systems and Integration - Integration of Life-Cycle Data for Process Plants
Including Oil and Gas Production Facilities - Part 11: Simplified Industrial Usage
of Reference Data Based on RDFS Methodology, ISO, Geneva, Switzerland, 2023.
G. Lee, Y.H. Park, S. Ham, Extended Process to Product Modeling (xPPM) for
integrated and seamless IDM and MVD development, Adv. Eng. Inform. 27 (4)
(2013) 636-651.

[2]

[3]

[5]

[6]

[7]

[8]

[91]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

https://standards.buildingsmart.org/IFC/RELEASE/IFC4/FINAL/HTML/
https://standards.buildingsmart.org/IFC/RELEASE/IFC4/FINAL/HTML/
https://standards.buildingsmart.org/IFC/RELEASE/IFC4/FINAL/HTML/
https://standards.buildingsmart.org/documents/IDM/IDM_guide-CompsAndDevMethods-IDMC_004-v1_2.pdf
https://standards.buildingsmart.org/documents/IDM/IDM_guide-CompsAndDevMethods-IDMC_004-v1_2.pdf
https://standards.buildingsmart.org/documents/IDM/IDM_guide-CompsAndDevMethods-IDMC_004-v1_2.pdf
https://standards.buildingsmart.org/documents/IDM/IDM_guide-IntegratedProcess-2012_09.pdf
https://standards.buildingsmart.org/documents/IDM/IDM_guide-IntegratedProcess-2012_09.pdf
https://standards.buildingsmart.org/documents/IDM/IDM_guide-IntegratedProcess-2012_09.pdf
http://refhub.elsevier.com/S1474-0346(23)00260-4/sb4
http://refhub.elsevier.com/S1474-0346(23)00260-4/sb4
http://refhub.elsevier.com/S1474-0346(23)00260-4/sb4
https://technical.buildingsmart.org/standards/ifc/mvd/mvd-database/
https://technical.buildingsmart.org/standards/ifc/mvd/mvd-database/
https://technical.buildingsmart.org/standards/ifc/mvd/mvd-database/
http://refhub.elsevier.com/S1474-0346(23)00260-4/sb6
http://refhub.elsevier.com/S1474-0346(23)00260-4/sb6
http://refhub.elsevier.com/S1474-0346(23)00260-4/sb6
http://refhub.elsevier.com/S1474-0346(23)00260-4/sb6
http://refhub.elsevier.com/S1474-0346(23)00260-4/sb6
http://refhub.elsevier.com/S1474-0346(23)00260-4/sb7
http://refhub.elsevier.com/S1474-0346(23)00260-4/sb7
http://refhub.elsevier.com/S1474-0346(23)00260-4/sb7
http://refhub.elsevier.com/S1474-0346(23)00260-4/sb7
http://refhub.elsevier.com/S1474-0346(23)00260-4/sb7
https://github.com/BuildingSMART/mvdXML/tree/master/mvdXML1.1
https://github.com/BuildingSMART/mvdXML/tree/master/mvdXML1.1
https://github.com/BuildingSMART/mvdXML/tree/master/mvdXML1.1
https://standards.buildingsmart.org/MVD/RELEASE/mvdXML/v1-1/mvdXML_V1-1-Final.pdf
https://standards.buildingsmart.org/MVD/RELEASE/mvdXML/v1-1/mvdXML_V1-1-Final.pdf
https://standards.buildingsmart.org/MVD/RELEASE/mvdXML/v1-1/mvdXML_V1-1-Final.pdf
http://refhub.elsevier.com/S1474-0346(23)00260-4/sb10
http://refhub.elsevier.com/S1474-0346(23)00260-4/sb10
http://refhub.elsevier.com/S1474-0346(23)00260-4/sb10
http://refhub.elsevier.com/S1474-0346(23)00260-4/sb10
http://refhub.elsevier.com/S1474-0346(23)00260-4/sb10
http://refhub.elsevier.com/S1474-0346(23)00260-4/sb11
http://refhub.elsevier.com/S1474-0346(23)00260-4/sb11
http://refhub.elsevier.com/S1474-0346(23)00260-4/sb11
http://refhub.elsevier.com/S1474-0346(23)00260-4/sb11
http://refhub.elsevier.com/S1474-0346(23)00260-4/sb11
http://refhub.elsevier.com/S1474-0346(23)00260-4/sb12
http://refhub.elsevier.com/S1474-0346(23)00260-4/sb12
http://refhub.elsevier.com/S1474-0346(23)00260-4/sb12
http://refhub.elsevier.com/S1474-0346(23)00260-4/sb12
http://refhub.elsevier.com/S1474-0346(23)00260-4/sb12
http://refhub.elsevier.com/S1474-0346(23)00260-4/sb13
http://refhub.elsevier.com/S1474-0346(23)00260-4/sb13
http://refhub.elsevier.com/S1474-0346(23)00260-4/sb13
http://refhub.elsevier.com/S1474-0346(23)00260-4/sb13
http://refhub.elsevier.com/S1474-0346(23)00260-4/sb13
http://refhub.elsevier.com/S1474-0346(23)00260-4/sb13
http://refhub.elsevier.com/S1474-0346(23)00260-4/sb13
http://refhub.elsevier.com/S1474-0346(23)00260-4/sb14
http://refhub.elsevier.com/S1474-0346(23)00260-4/sb14
http://refhub.elsevier.com/S1474-0346(23)00260-4/sb14
http://refhub.elsevier.com/S1474-0346(23)00260-4/sb14
http://refhub.elsevier.com/S1474-0346(23)00260-4/sb14
http://refhub.elsevier.com/S1474-0346(23)00260-4/sb14
http://refhub.elsevier.com/S1474-0346(23)00260-4/sb14
http://refhub.elsevier.com/S1474-0346(23)00260-4/sb15
http://refhub.elsevier.com/S1474-0346(23)00260-4/sb15
http://refhub.elsevier.com/S1474-0346(23)00260-4/sb15
https://github.com/xBimTeam/XbimMvdXML
https://github.com/xBimTeam/XbimMvdXML
https://github.com/xBimTeam/XbimMvdXML
https://github.com/opensourceBIM/mvdXMLChecker
https://github.com/opensourceBIM/mvdXMLChecker
https://github.com/opensourceBIM/mvdXMLChecker
https://github.com/jyrkioraskari/mvdXMLChecker
https://github.com/jyrkioraskari/mvdXMLChecker
https://github.com/jyrkioraskari/mvdXMLChecker
https://github.com/opensourceBIM/python-mvdxml
https://github.com/opensourceBIM/python-mvdxml
https://github.com/opensourceBIM/python-mvdxml
http://refhub.elsevier.com/S1474-0346(23)00260-4/sb20
http://refhub.elsevier.com/S1474-0346(23)00260-4/sb20
http://refhub.elsevier.com/S1474-0346(23)00260-4/sb20
http://refhub.elsevier.com/S1474-0346(23)00260-4/sb20
http://refhub.elsevier.com/S1474-0346(23)00260-4/sb20
http://refhub.elsevier.com/S1474-0346(23)00260-4/sb20
http://refhub.elsevier.com/S1474-0346(23)00260-4/sb20
http://refhub.elsevier.com/S1474-0346(23)00260-4/sb21
http://refhub.elsevier.com/S1474-0346(23)00260-4/sb21
http://refhub.elsevier.com/S1474-0346(23)00260-4/sb21
http://refhub.elsevier.com/S1474-0346(23)00260-4/sb21
http://refhub.elsevier.com/S1474-0346(23)00260-4/sb21
http://refhub.elsevier.com/S1474-0346(23)00260-4/sb22
http://refhub.elsevier.com/S1474-0346(23)00260-4/sb22
http://refhub.elsevier.com/S1474-0346(23)00260-4/sb22
http://refhub.elsevier.com/S1474-0346(23)00260-4/sb22
http://refhub.elsevier.com/S1474-0346(23)00260-4/sb22
http://refhub.elsevier.com/S1474-0346(23)00260-4/sb22
http://refhub.elsevier.com/S1474-0346(23)00260-4/sb22
http://refhub.elsevier.com/S1474-0346(23)00260-4/sb23
http://refhub.elsevier.com/S1474-0346(23)00260-4/sb23
http://refhub.elsevier.com/S1474-0346(23)00260-4/sb23
http://refhub.elsevier.com/S1474-0346(23)00260-4/sb23
http://refhub.elsevier.com/S1474-0346(23)00260-4/sb23

H. Liu et al.

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

M. Venugopal, C. Eastman, R. Sacks, Configurable model exchanges for the
precast/pre-stressed concrete industry using semantic exchange modules (SEM),
in: R.R. Issa, L. Flood (Eds.), International Conference on Computing in Civil Engi-
neering, ASCE, 2012, pp. 269-276, http://dx.doi.org/10.1061/9780784412343.
0034.

M. Venugopal, C.M. Eastman, J. Teizer, An ontology-based analysis of the
industry foundation class schema for building information model exchanges, Adv.
Eng. Inform. 29 (4) (2015) 940-957.

M. Weise, P. Katranuschkov, R.J. Scherer, Generalised model subset definition
schema, in: CIB W78’s 20th International Conference on Construction IT, CIB,
ISBN: 0908689713, 2003, pp. 440-448.

J. Beetz, J. Van Leeuwen, B. De Vries, IfcOWL: A case of transforming EXPRESS
schemas into ontologies, Artif. Intell. Eng. Des. Anal. Manuf. 23 (1) (2009)
89-101.

International Standards Office, ISO 15926-2:2003 Industrial Automation Systems
and Integration - Integration of Life-Cycle Data for Process Plants Including Oil
and Gas Production Facilities - Part 2: Data Model, ISO, Geneva, Switzerland,
2003.

P. Pauwels, D. Shelden, J. Brouwer, D. Sparks, SahaNirvik, T.P. McGinley,
Building and Semantics: Data Models and Web Technologies for the Built
Environment, CRC Press, 2022, pp. 106-107.

H. Knublauch, D. Kontokostas, Shapes constraint language (SHACL), 2017,
Available from: https://www.w3.org/TR/shacl/ (accessed January 2022).
International Standards Office, ISO 15926-10:2019 Industrial Automation Sys-
tems and Integration - Integration of Life-Cycle Data for Process Plants Including
Oil and Gas Production Facilities - Part 10: Conformance Testing, ISO, Geneva,
Switzerland, 2019.

R.K. Soman, M. Molina-Solana, J.K. Whyte, Linked-Data based Constraint-
Checking (LDCC) to support look-ahead planning in construction, Autom. Constr.
120 (2020) 103369.

J. Oraskari, M. Senthilvel, J. Beetz, SHACL is for LBD what mvdXML is for IFC,
in: Proc. of the Conference CIB W78, Vol. 2021, 2021, pp. 11-15.

S. Stolk, K. McGlinn, Validation of IfcOWL datasets using SHACL, in: Proceedings
of the 8th Linked Data in Architecture and Construction Workshop, 2020, pp.
91-104.

C. Zhang, J. Beetz, B. de Vries, BimSPARQL: Domain-specific functional SPARQL
extensions for querying RDF building data, Semant. Web 9 (6) (2018) 829-855.
W. Mazairac, J. Beetz, BIMQL - An open query language for building information
models, Adv. Eng. Inform. 27 (4) (2013) 444-456.

14

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

Advanced Engineering Informatics 58 (2023) 102132

E. Tauscher, H.-J. Bargstadt, K. Smarsly, Generic BIM queries based on the
IFC object model using graph theory, in: Proceedings of the 16th International
Conference on Computing in Civil and Building Engineering, ICCCBE2016
Organizing Committee, ISBN: 9784990737122, 2016, pp. 905-912.

C. Preidel, A. Borrmann, Integrating relational algebra into a visual code
checking language for information retrieval from building information mod-
els, in: Proceedings of the 16th International Conference on Computing in
Civil and Building Engineering, ICCCBE2016 Organizing Committee, ISBN:
9784990737122, 2016, pp. 454-461.

J. Werbrouck, M. Senthilvel, M.H. Rasmussen, Building and Semantics: Data
Models and Web Technologies for the Built Environment, CRC Press, 2022, pp.
150-151.

Solibri, Solibri office, 2023, Available from: https://www.solibri.com/solibri-
office (accessed May 2023).

EXPRESS Data Manager, Jotne, 2023, Available from: https://jotneconnect.com/
products/express-data-manager/ (accessed May 2023).

Simplebim, Support site for Simplebim users - mvdXML, 2022, Avail-
able from: https://www.simplebim.com/support/addon-mvdxml.html (accessed
January 2022).

M. Weise, T. Liebich, N. Nisbet, C. Benghi, IFC model checking based on mvdXML
1.1, in: S.E. Christodoulou, R. Scherer (Eds.), EWork and EBusiness in Architec-
ture, Engineering and Construction: ECPPM, CRC Press, ISBN: 9781315386898,
2016, pp. 19-26.

C. Zhang, J. Beetz, M. Weise, Model view checking: automated validation for
IFC building models, in: A. Mahdavi, B. Martens, R. Scherer (Eds.), EWork and
EBusiness in Architecture, Engineering and Construction: ECPPM, CRC Press,
ISBN: 9781315736952, 2014, pp. 123-128.

Y.-C. Lee, C.M. Eastman, W. Solihin, R. See, Modularized rule-based validation
of a BIM model pertaining to model views, Autom. Constr. 63 (2016) 1-11.
Y.-C. Lee, C.M. Eastman, W. Solihin, Logic for ensuring the data exchange
integrity of building information models, Autom. Constr. 85 (2018) 249-262.
W. Solihin, C. Eastman, Y.-C. Lee, Toward robust and quantifiable automated
IFC quality validation, Adv. Eng. Inform. 29 (3) (2015) 739-756.

M.H. Rasmussen, M. Lefrancois, G.F. Schneider, P. Pauwels, BOT: the building
topology ontology of the W3C linked building data group, Semant. Web 12 (1)
(2021) 143-161.

NIBS, Common building information model files and tools, 2012, Available from:
https://www.wbdg.org/bim/cobie/common-bim-files (accessed January 2022).
buildingSMART, IfcDoc/IfcKit/exchanges/, 2018, Available from: https://
github.com/buildingSMART/IfcDoc/tree/master/IfcKit/exchanges (accessed Jan-
uary 2022).

http://dx.doi.org/10.1061/9780784412343.0034
http://dx.doi.org/10.1061/9780784412343.0034
http://dx.doi.org/10.1061/9780784412343.0034
http://refhub.elsevier.com/S1474-0346(23)00260-4/sb25
http://refhub.elsevier.com/S1474-0346(23)00260-4/sb25
http://refhub.elsevier.com/S1474-0346(23)00260-4/sb25
http://refhub.elsevier.com/S1474-0346(23)00260-4/sb25
http://refhub.elsevier.com/S1474-0346(23)00260-4/sb25
http://refhub.elsevier.com/S1474-0346(23)00260-4/sb26
http://refhub.elsevier.com/S1474-0346(23)00260-4/sb26
http://refhub.elsevier.com/S1474-0346(23)00260-4/sb26
http://refhub.elsevier.com/S1474-0346(23)00260-4/sb26
http://refhub.elsevier.com/S1474-0346(23)00260-4/sb26
http://refhub.elsevier.com/S1474-0346(23)00260-4/sb27
http://refhub.elsevier.com/S1474-0346(23)00260-4/sb27
http://refhub.elsevier.com/S1474-0346(23)00260-4/sb27
http://refhub.elsevier.com/S1474-0346(23)00260-4/sb27
http://refhub.elsevier.com/S1474-0346(23)00260-4/sb27
http://refhub.elsevier.com/S1474-0346(23)00260-4/sb28
http://refhub.elsevier.com/S1474-0346(23)00260-4/sb28
http://refhub.elsevier.com/S1474-0346(23)00260-4/sb28
http://refhub.elsevier.com/S1474-0346(23)00260-4/sb28
http://refhub.elsevier.com/S1474-0346(23)00260-4/sb28
http://refhub.elsevier.com/S1474-0346(23)00260-4/sb28
http://refhub.elsevier.com/S1474-0346(23)00260-4/sb28
http://refhub.elsevier.com/S1474-0346(23)00260-4/sb29
http://refhub.elsevier.com/S1474-0346(23)00260-4/sb29
http://refhub.elsevier.com/S1474-0346(23)00260-4/sb29
http://refhub.elsevier.com/S1474-0346(23)00260-4/sb29
http://refhub.elsevier.com/S1474-0346(23)00260-4/sb29
https://www.w3.org/TR/shacl/
http://refhub.elsevier.com/S1474-0346(23)00260-4/sb31
http://refhub.elsevier.com/S1474-0346(23)00260-4/sb31
http://refhub.elsevier.com/S1474-0346(23)00260-4/sb31
http://refhub.elsevier.com/S1474-0346(23)00260-4/sb31
http://refhub.elsevier.com/S1474-0346(23)00260-4/sb31
http://refhub.elsevier.com/S1474-0346(23)00260-4/sb31
http://refhub.elsevier.com/S1474-0346(23)00260-4/sb31
http://refhub.elsevier.com/S1474-0346(23)00260-4/sb32
http://refhub.elsevier.com/S1474-0346(23)00260-4/sb32
http://refhub.elsevier.com/S1474-0346(23)00260-4/sb32
http://refhub.elsevier.com/S1474-0346(23)00260-4/sb32
http://refhub.elsevier.com/S1474-0346(23)00260-4/sb32
http://refhub.elsevier.com/S1474-0346(23)00260-4/sb33
http://refhub.elsevier.com/S1474-0346(23)00260-4/sb33
http://refhub.elsevier.com/S1474-0346(23)00260-4/sb33
http://refhub.elsevier.com/S1474-0346(23)00260-4/sb34
http://refhub.elsevier.com/S1474-0346(23)00260-4/sb34
http://refhub.elsevier.com/S1474-0346(23)00260-4/sb34
http://refhub.elsevier.com/S1474-0346(23)00260-4/sb34
http://refhub.elsevier.com/S1474-0346(23)00260-4/sb34
http://refhub.elsevier.com/S1474-0346(23)00260-4/sb35
http://refhub.elsevier.com/S1474-0346(23)00260-4/sb35
http://refhub.elsevier.com/S1474-0346(23)00260-4/sb35
http://refhub.elsevier.com/S1474-0346(23)00260-4/sb36
http://refhub.elsevier.com/S1474-0346(23)00260-4/sb36
http://refhub.elsevier.com/S1474-0346(23)00260-4/sb36
http://refhub.elsevier.com/S1474-0346(23)00260-4/sb37
http://refhub.elsevier.com/S1474-0346(23)00260-4/sb37
http://refhub.elsevier.com/S1474-0346(23)00260-4/sb37
http://refhub.elsevier.com/S1474-0346(23)00260-4/sb37
http://refhub.elsevier.com/S1474-0346(23)00260-4/sb37
http://refhub.elsevier.com/S1474-0346(23)00260-4/sb37
http://refhub.elsevier.com/S1474-0346(23)00260-4/sb37
http://refhub.elsevier.com/S1474-0346(23)00260-4/sb38
http://refhub.elsevier.com/S1474-0346(23)00260-4/sb38
http://refhub.elsevier.com/S1474-0346(23)00260-4/sb38
http://refhub.elsevier.com/S1474-0346(23)00260-4/sb38
http://refhub.elsevier.com/S1474-0346(23)00260-4/sb38
http://refhub.elsevier.com/S1474-0346(23)00260-4/sb38
http://refhub.elsevier.com/S1474-0346(23)00260-4/sb38
http://refhub.elsevier.com/S1474-0346(23)00260-4/sb38
http://refhub.elsevier.com/S1474-0346(23)00260-4/sb38
http://refhub.elsevier.com/S1474-0346(23)00260-4/sb39
http://refhub.elsevier.com/S1474-0346(23)00260-4/sb39
http://refhub.elsevier.com/S1474-0346(23)00260-4/sb39
http://refhub.elsevier.com/S1474-0346(23)00260-4/sb39
http://refhub.elsevier.com/S1474-0346(23)00260-4/sb39
https://www.solibri.com/solibri-office
https://www.solibri.com/solibri-office
https://www.solibri.com/solibri-office
https://jotneconnect.com/products/express-data-manager/
https://jotneconnect.com/products/express-data-manager/
https://jotneconnect.com/products/express-data-manager/
https://www.simplebim.com/support/addon-mvdxml.html
http://refhub.elsevier.com/S1474-0346(23)00260-4/sb43
http://refhub.elsevier.com/S1474-0346(23)00260-4/sb43
http://refhub.elsevier.com/S1474-0346(23)00260-4/sb43
http://refhub.elsevier.com/S1474-0346(23)00260-4/sb43
http://refhub.elsevier.com/S1474-0346(23)00260-4/sb43
http://refhub.elsevier.com/S1474-0346(23)00260-4/sb43
http://refhub.elsevier.com/S1474-0346(23)00260-4/sb43
http://refhub.elsevier.com/S1474-0346(23)00260-4/sb44
http://refhub.elsevier.com/S1474-0346(23)00260-4/sb44
http://refhub.elsevier.com/S1474-0346(23)00260-4/sb44
http://refhub.elsevier.com/S1474-0346(23)00260-4/sb44
http://refhub.elsevier.com/S1474-0346(23)00260-4/sb44
http://refhub.elsevier.com/S1474-0346(23)00260-4/sb44
http://refhub.elsevier.com/S1474-0346(23)00260-4/sb44
http://refhub.elsevier.com/S1474-0346(23)00260-4/sb45
http://refhub.elsevier.com/S1474-0346(23)00260-4/sb45
http://refhub.elsevier.com/S1474-0346(23)00260-4/sb45
http://refhub.elsevier.com/S1474-0346(23)00260-4/sb46
http://refhub.elsevier.com/S1474-0346(23)00260-4/sb46
http://refhub.elsevier.com/S1474-0346(23)00260-4/sb46
http://refhub.elsevier.com/S1474-0346(23)00260-4/sb47
http://refhub.elsevier.com/S1474-0346(23)00260-4/sb47
http://refhub.elsevier.com/S1474-0346(23)00260-4/sb47
http://refhub.elsevier.com/S1474-0346(23)00260-4/sb48
http://refhub.elsevier.com/S1474-0346(23)00260-4/sb48
http://refhub.elsevier.com/S1474-0346(23)00260-4/sb48
http://refhub.elsevier.com/S1474-0346(23)00260-4/sb48
http://refhub.elsevier.com/S1474-0346(23)00260-4/sb48
https://www.wbdg.org/bim/cobie/common-bim-files
https://github.com/buildingSMART/IfcDoc/tree/master/IfcKit/exchanges
https://github.com/buildingSMART/IfcDoc/tree/master/IfcKit/exchanges
https://github.com/buildingSMART/IfcDoc/tree/master/IfcKit/exchanges

	MVDLite: A fast validation algorithm for Model View Definition rules
	Introduction
	Related Work
	Research on the IDM-MVD Method
	The mvdXML Ruleset
	Automated MVD Validation

	The MVDLite Algorithm
	The Rule Chain Structure
	Composing the Rule Chain from the mvdXML Ruleset
	Performing Validation on the Rule Chain
	The Deep-Caching Strategy

	Experiments
	Experiments Setup
	Experimental Results

	Discussions
	The Complexity of MVDLite Algorithm
	The Applicable Scope of the MVDLite Algorithm

	Conclusion and Future Work
	Declaration of competing interest
	Data availability
	Acknowledgments
	References

