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3D Shape Contrastive Representation Learning
with Adversarial Examples

Congcong Wen, Xiang Li, Hao Huang, Yu-Shen Liu, and Yi Fang†

Abstract—Current supervised methods for 3D shape represen-
tation learning have achieved satisfying performance, yet require
extensive human-labeled datasets. Unsupervised learning-based
methods provide a viable solution by learning shape representa-
tions without using ground truth labels. In this study, we develop
a contrastive learning framework for unsupervised representation
learning of 3D shapes. Specifically, in order to encourage models
to pay more attention to useful information during representation
learning, we first introduce a new paradigm for critical points
search based on the adversarial mechanism. We extract critical
points with a larger impact on the global feature by attacking a
pre-trained auto-encoder model, and apply data augmentations
on these points to generate adversarial examples. Taking a pair
of adversarial examples as inputs, we obtain their intermediate
embeddings and global representations of corresponding inputs,
which are then transformed into latent spaces by two predictor
heads. Finally, we train the proposed model by maximizing the
agreements on these latent spaces via Normalized Temperature-
scaled Cross Entropy (NT-Xent) loss and a newly designed Cross-
layer Normalized Temperature-scaled Cross Entropy (Cross-NT-
Xent) loss, where the latter is proposed in this paper to enforce
cross-layer feature similarities. The effectiveness, robustness, and
transferability of learned representations are validated on three
downstream tasks, including object classification, few-shot clas-
sification, and shape retrieval. Experiments on three benchmark
datasets show that our learned representations achieve better or
competitive performance than current state-of-the-art methods
in these downstream tasks. Moreover, our model can easily be
extended to 3D part segmentation and scene segmentation tasks.

Index Terms—3D Shape Representation, Contrastive Learning,
Adversarial Examples, Few-shot Learning, Shape Retrieval

I. INTRODUCTION

3D geometric data has been widely applied in various
applications, such as robotics, augmented reality, and

autonomous driving. As one of the fundamental problems in
3D computer vision, 3D shape representation learning has
recently attracted increasing attention. Although numerous
studies [1], [2], [3], [4], [5] using supervised learning with
extensive manually-labeled datasets have achieved remarkable
performance, the time and manpower required for data collec-
tion and annotation poses a significant barrier to real-world
applications. Alternatively, unsupervised learning methods,
which don’t require ground truth labels, provide an attractive
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Fig. 1. Visualization of unsupervisedly learned representations by FoldingNet
and ShapeContrast on the test set of ModelNet10 using t-SNE.

solution to this issue and become more appealing in the 3D
vision community.

Several attempts have been made to learn 3D shape rep-
resentations based on unsupervised learning. One important
direction is to train auto-encoder networks by minimizing the
reconstruction error to learn shape representations [6], [7], [8].
Specifically, they first employ an encoder network to obtain
global shape representations from input 3D shapes and then
utilize a decoder network to reconstruct the original inputs.
Although such methods perform well on shape reconstruc-
tion, they usually have several drawbacks: first, the learned
representations are variant as they involve specific informa-
tion (such as pose information) of objects from input [9];
second, these methods struggle to capture effective semantic
information during representation learning[10], [11]. Figure 1
a) shows the learned representations on ModelNet10 test set
by FoldingNet[6] method. It can be seen that learned global
shape representations are intersected for several categories.

Another promising direction in unsupervised visual repre-
sentation learning is contrastive learning [12], [13], [14], [15]
which learns 3D shape representations by maximizing the
agreements of different augmented views of the same inputs.
Inspired by this, some researchers have applied contrastive
learning models to 3D vision tasks [16], [9], [17]. However,
their learned representations are also limited in effectiveness
mainly for two reasons: they pay equal attention to all points in
the input point cloud; and they only focus on the similarities
between global representations of input shapes. To remedy
the first issue, we propose a new paradigm that utilizes an
adversarial mechanism to identify “critical points” in the input
point cloud of 3D shapes. It’s worth noting that “critical
points” refer to important points in point clouds with the
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maximum information [18], [19]. As we know, a trained neural
network model can be attacked by adding small perturbations
to certain points of an input point cloud, i.e., these points
have greater impacts on global features. Accordingly, in this
paper, we refer to these critical points that contribute more
to the vulnerability of neural networks as adversarial points.
To encourage the proposed model to pay more attention to
adversarial points, we apply data augmentations only on the
adversarial points to generate adversarial examples. To solve
the second issue, we additionally maximize the agreements
between the local embeddings of one adversarial example
and the global representation of the other adversarial example
by introducing a Cross-layer Normalized Temperature-scaled
Cross Entropy (Cross-NT-Xent) loss function.

To conclude, we propose ShapeContrast, a universal con-
trastive learning neural network for 3D shape representation
learning. Specifically, we identify critical points using the
adversarial mechanism that attacks a pre-trained auto-encoder
model. Next, we apply data augmentations solely to these
adversarial points in order to enable the proposed model to
concentrate on the points that have a greater impact on repre-
sentation learning. The augmented views of adversarial points
are then merged with other non-adversarial points to obtain
adversarial examples. A pair of adversarial examples are input
into a weight-sharing encoder to extract the local embeddings
and global representations, which are further transformed
into latent spaces by using two lightweight predictor heads.
Finally, we maximize the agreements between two adversarial
examples in these latent spaces via the NT-Xent loss and the
proposed Cross-NT-Xent loss. Our principal contributions are
summarized as follows.

• We achieve effective 3D shape representation learning by
designing a new paradigm for critical point identification
based on the adversarial mechanism, which enables the
proposed model to concentrate more on critical points.

• We introduce a Cross-NT-Xent loss function to maximize
similarities between local embedding and global repre-
sentation of different branches to improve the quality of
learned representation.

• Extensive experiments on three benchmark datasets show
new state-of-the-art or competitive performance in three
downstream tasks, including shape classification, few-
shot classification, and shape retrieval.

• Our model exhibits promising extensibility and general-
izability, and can be easily extended to part segmentation
and scene segmentation tasks.

II. RELATED WORK

A. Point Cloud Representation Learning

Supervised Representation Learning: Early work on point
cloud representation learning mainly focused on supervised
learning methods. PointNet [1], as one of the pioneering deep
learning models directly applied to raw point clouds, extracts
the features of each point by multilayer perceptron (MLP)
layers and then utilizes a symmetric function to obtain a
global feature representation. To remedy PointNet’s limitation
of being unable to consider the local geometry structures, the

follow-up work PointNet++ [2] is proposed to iteratively apply
PointNet to extract features in local regions of the point cloud
generated by sampling and grouping operations. In addition,
some researchers design convolutional kernels for 3D point
clouds to learn feature representations [3], [20], [5], [4], [21].
For instance, PointConv [4] introduces a convolutional kernel
by combining a weighting function and a density function.
Moreover, a number of graph networks [22], [23], [24],
[25], [26] are proposed to perform representation learning
by regarding a point cloud as a graph. DGCNN [25], a
representative graph-based method, employs edge convolution
to learn features from the graph constructed dynamically in
the feature space.

Unsupervised Representation Learning: Recently, un-
supervised learning has attracted an increasing attention as
an alternative method for feature extraction. Compared to
supervised learning methods, unsupervised learning methods
don’t require the time-consuming annotation of point cloud,
which provides more possibilities for practical applications.
One of the main directions of existing studies for unsupervised
representation learning is based on the auto-encoder frame-
work [6], [27], [28], [29], [7], [8], [30], in which an encoder
network is applied to extract global features and a decoder
network is utilized to reconstruct the point cloud from learned
representation. However, the learned representation involves
specific information of input shape, like pose information,
which is inconsistent with the goal of learning invariant
representations. In addition, the learned representation may
perform well on low-level tasks like completion and recon-
struction, but it has limitations on high-level tasks that require
semantic information [10], [11]. To address this problem,
PointGLR [10] implements a bidirectional reasoning network
by connecting the local structures at different levels and the
global shape.

Contrastive learning, as another promising direction in un-
supervised representation learning, has recently played a dom-
inant role in the image and natural language processing (NLP)
domains [12], [13], [14], [15]. Different from the auto-encoder
framework, which require an additional decoder network to
reconstruct the input shape, contrastive learning methods only
consider the similarity of learned representation among sam-
ples, enabling the network concentrate on extracting powerful
representations. Recently, a few studies [16], [9], [17] have
attempted to incorporate the contrastive learning to point cloud
tasks. For example, ContrastNet [16] first generates some parts
of a 3D object shape and then conducts partial contrastive
learning to obtain features. Based on the learned feature, the
authors design the other two networks for clustering and clas-
sification. Besides, Info3D [9] takes different views of a 3D
object shape as input and maximizes the mutual information
of the features learned by the same encoder. However, these
methods fail to consider the contribution difference of each
point to the representation learning. Meanwhile, they only take
the similarity between global features of different branches
into account to optimize the network parameters.
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Fig. 2. Overview of the proposed ShapeContrast. We first generate X1 and X2 based on the Adversarial Examples Generation Module (see Figure 3). Then,
we input X1 and X2 to a weight-sharing feature learning encoder f(·) to obtain global representation g1 and g2, respectively. Besides, we preserve the
local features l1 and l2 from various intermediate layers of the encoder f(·). Next, we utilize predictor head h(·) to transform g1 and g2 to latent vector z1
and z2, and predictor head q(·) to transform l1 and l2 to latent vector c1 and c2, respectively. Finally, we adopt NT-Xent and the proposed Cross-NT-Xent
functions to optimize the parameters of encoder f(·), predictor head h(·), and predictor head q(·).

B. Adversarial Attack and Examples on Point Cloud

Extensive studies [31], [32], [33], [34], [35] have shown
that deep neural networks of 2D images recognition are vulner-
able to adversarial examples, which are generated by adding
imperceptible perturbations that cause the models to make
wrong predictions. Such vulnerability of deep learning models
has also raised great concerns in the 3D vision [36], [37],
[38], [39], [40], [41]. Xiang et al.[36] investigate adversarial
attacks on point cloud classification task by proposing two
types of attacks: adversarial point perturbation and adversarial
point generation. Lee et al. [40] injects adversarial noises
into the learned latent space of point clouds and obtains
adversarial examples by inputting the noised features to a
decoder. All these works demonstrate that the global features
are very vulnerable to the effect of adding perturbations to
some specific points. Inspired by this, we regard these specific
points as adversarial points, which are more critical than other
points in a point cloud during representation learning. By
adopting the adversarial mechanism, we extract critical points
and apply data augmentations to these points, which is aimed
at enabling model to pay more attention to points with larger
contributions to the representation learning.

III. METHODS

This section will provide a detailed description of the
proposed ShapeContrast. In Section III-A, we introduce the

overall architecture that is also illustrated in Fig. 2. And then,
in Section III-B, we elaborate the Adversarial Examples Gen-
eration Module that is used to generate a pair of adversarial
examples when given a point cloud example. Next, in Section
III-C, we delve to the Contrastive Learning Neural Network,
including its components and the process of obtaining local
intermediate embeddings and global representations. Finally,
in Section III-D, we present the Contrastive Loss Functions
that are used to optimize the parameters of the proposed
model.

A. Overall Architecture

The overall architecture is illustrated in Fig. 2. Given a
3D point set X = {x1, x2, ..., xN}, where each point xi is
represented by a 3D coordinate, and N is the number of
points. We first generate two adversarial examples, X1 and
X2, based on the proposed Adversarial Examples Generation
Module (Section III-B). And the generated X1 and X2 are
input into the Contrastive Learning Neural Network (Section
III-C) to first produce the local intermediate embeddings l
and the global representation g, and then output the latent
vectors c and z, which are respectively predicted from l
and g. Specifically, we input X1 and X2 into a weight-
sharing encoder f(·) to obtain global representation g1 and g2,
respectively. Besides, we also preserve the local intermediate
embeddings l1 and l2 produced from fI , which represents the
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Fig. 3. Illustration of adversarial examples generation. First, we generate
adversarial point cloud X

′
by applying the adversarial attack on raw point

cloud X . Then, we calculate the Euclidean distance between each point of
X and X

′
. Next, we return the indexes of the top K points with the largest

distances, and extract the adversarial points Xap according to these indexes,
while the rest of the points are used as general points Xgp. Finally, we obtain
adversarial examples X1 and X2. by adding two standard data augmentations
t1 and t2 on Xap and merging the augmented views of Xap with Xgp.

first few layers of encoder f(·). Next, we introduce predictor
head h(·) to transform global features g1 and g2 to latent
vectors z1 and z2, and a predictor head q(·) to map local
features l1 and l2 to latent vectors c1 and c2. The processing
of the entire network can be formulated as:

z1 ≜ h(f(X1)) z2 ≜ h(f(X2))

c1 ≜ q(fI(X1)) c2 ≜ q(fI(X2)).
(1)

After obtaining these latent vectors, we define two
types of contrastive loss functions: Normalized Temperature-
scaled Cross Entropy (NT-Xent) and Cross-layer Normalized
Temperature-scaled Cross Entropy (Cross-NT-Xent). The first
loss function is aimed to maximize agreement on latent vectors
z1 and z2, since two adversarial examples of the same object
should be similar in terms of global representation. And the
second loss function is aimed to maximize agreement on latent
vectors z1 and c2, and z2 and c1, as the local structures and
global shape of an object should be closely correlated, which
also applies to different augmented views of the same object.
That is, the local structures of one augmented view should also
be related to the global shape of the other augmented view.
Therefore, the final objective function is defined as:

L = L1(z1, z2) +L2(c2, z1) +L2(c1, z2), (2)

where L1 denotes the NT-Xent loss function, which measures
the agreement between the latent spaces of global features to
ensure that the global representations of the two augmented
examples are similar. And L2 denotes the Cross-NT-Xent
loss function, which measures the agreement between the
latent spaces of local features and global features to make the
local structure of one augmented example correlated with the
global representations of the other augmented example. The
algorithm is summarized in Algorithm 2.

B. Adversarial Examples Generation

Existing contrastive learning methods [16], [9], [17] typi-
cally conduct augmentations on all points of a point cloud,
which do not account for differences in contributions between

points to representation learning. However, as previously
stated, our model is expected to focus on the critical points,
refered to adversarial points in this paper, which have a greater
contribution to representation learning. Considering this, we
only conduct augmentations on these adversarial points of the
point cloud in this paper.

As shown in Fig. 3, in order to identify adversarial points,
we first conduct the adversarial attack on a pre-trained point
cloud auto-encoder model to obtain adversarial point cloud
X

′
. Note that our goal is to achieve unsupervised representa-

tion learning, so pre-trained supervised models are not consid-
ered. In this paper, we adopt projected gradient descent (PGD)
[42] as the attack method for adversarial points identification.
The PGD attack can be regarded as an inner maximization
problem, which is aimed at finding a small perturbation to
maximize the reconstruction loss of target auto-encoder model,
formulated as:

maxLAE(θ,M(X
′
),X), (3)

where LAE is reconstruction loss function, θ is parameters
of auto-encoder model M , X is input point cloud, X

′
is

generated adversarial point cloud. To achieve this, referring
to [42], we iteratively add the sign of the gradient of the
loss function with respect to the input, while projecting the
perturbation back to ensure the adversarial examples are valid
on the geometry. This iterative process can be expressed as:

X0 = X

Xt+1 = P
(
Xt + α sign

(
∇XtLAE(M(Xt),Xt)

))
, t ∈ [0, T − 1]

X
′
= XT

(4)
where Xt refers to the adversarial point cloud at step t, α

denotes the learning rate, and P is the projection onto the
ball of interest, and this work uses clipping which is the case
of ℓ∞ norm to ensure the adversarial examples are valid on
the geometry. Hence, the perturbation of each point can be
calculated by the Euclidean distance between X and X

′
. Then

the first K points with the largest perturbation are chosen as
adversarial points Xap,

Xap =
{
Xk | k ∈ argmax(∥X

′
−X∥1:K)

}
, (5)

and the remaining points are regarded as general points Xgp.
Fig. 4 shows randomly selected identified adversarial points
(colored by red) of point clouds on the ModelNet40 test set.
Next, we perform two different data augmentations t1 and t2
on Xap, including random scaling and random shift, following
[1], [11]. Finally, the adversarial examples X1 and X2 of the
input point cloud X can be obtained by:

X1 = [t1(Xap),Xgp]

X2 = [t2(Xap),Xgp],
(6)

where t1 and t2 are two augmentations applied to point cloud
X , [·, ·] is concatenation operation. The algorithm is illustrated
in Fig. 3 and summarized in Algorithm 1.

C. Contrastive learning Neural Network

Our contrastive learning neural network consists of three
sub-networks: an encoder f(·), a predictor head h(·) and
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Fig. 4. Visualization of the adversarial points identified on the point cloud
examples of the Modelnet40 dataset.

a predictor head q(·). Two adversarial examples, X1 and
X2, are input to the encoder f(·) to get the corresponding
representation g1 and g2. Various choices of point cloud deep
neural networks can be used as the encoder. In this paper, we
adopt a simple and light-weight PointNet++ model [2], [10]
as our encoder, which has only two Single-Scale Grouping
(SSG) layers for feature aggregation. For each layer, we further
reduce the original three MLP layers to two MLP layers. The
outputs of two SSG layers, denoted by fI , from two branches
are preserved as local features l1 and l2, respectively. Then,
similar to the previous contrastive learning work [12], [13],
[15], a simple neural networks predictor head h(·) is utilized
to transform the global representation g1 and g2 to latent
vectors z1 and z2. Moreover, another simple neural networks
predictor head q(·) is designed to transform the local features
l1 and l2 to latent vectors c1 and c2. We implement these two
predictor heads by a two-layer MLP with a ReLU function,
and Eq.1 can be rewritten as:

z1 ≜ W
(2)
h ∗ (σ(W (1)

h ∗ f(X1) + b
(1)
h )) + b

(2)
h

z2 ≜ W
(2)
h ∗ (σ(W (1)

h ∗ f(X2) + b
(1)
h )) + b

(2)
h

c1 ≜ W (2)
q ∗ (σ(W (1)

q ∗ fI(X1) + b(1)q )) + b(2)q

c2 ≜ W (2)
q ∗ (σ(W (1)

q ∗ fI(X2) + b(1)q )) + b(2)q ,

(7)

Algorithm 1: Adversarial Examples Generation
Input: Point Cloud X , pre-trained AE model M with

parameter θ, loss function LAE , number of
iterations T , a small constant ε that restricts
the perturbation, the number of adversarial
points N

Output: Adversarial Example X1 and X2

1 Let Xt = X0 ;
2 for t = 1:T do
3 Calculate loss LAE ;
4 Calculate gradient ∇XtLAE ;
5 Calculate perturbation α sign∇XtLAE ;
6 Clip perturbation within the range [-ε, ε] ;
7 Update Xt ;
8 end
9 X

′
= XT ;

10 Calculate the distance between X and X
′

;
11 Select N points with the largest distance as Xap ;
12 Take the other points as Xgp ;
13 Apply data augmentations on Xap ;
14 Generate X1, X2 according to Eq. 6

where σ is a ReLU activation function, ∗ denotes matrix
multiplication, and W and b represent the weight parameter
and bias parameter of the MLP layer.

D. Contrastive Loss Functions

Considering the different adversarial examples of the same
object should be similar in terms of global representation, we
adopt the normalized temperature-scaled cross entropy loss
(NT-Xent) loss [12] to measure the similarity between trans-
formed latent spaces z1 and z2 of global representations g1
and g2 from two branches. Taking a mini-batch of N examples
as input, the two-branch architecture network produces a total
of 2N examples. For each positive pair in a mini-batch, we
treat the other 2N-2 examples as negative examples. Hence,
this loss function for a positive pair (zi, zj) in a mini-batch
can be formulated as:

L1(zi, zj) = − log
exp(sim(zi, zj)/τ)∑2N

k=1 1[k ̸=i] exp(sim(zi, zk)/τ)

sim(zi, zj) =
zT
i zj

∥zi∥∥zj∥
,

(8)

where sim(·) denotes cosine similarity, ∥ · ∥ indicates the l2
norm, τ is a temperature parameter and 1[k ̸=i] is an indicator
function that evaluates to 1 if k ̸= i.

Additionally, we have taken into account another fact that
the local structures and global representation of an object
should also be correlated, not only within the object itself
but also among different adversarial examples of the same
object. In other words, the local structures of one adversarial
example of the same object should be correlated with the
global representation of another adversarial sample as well.
To this end, we propose a novel Cross-layer Normalized
Temperature-scaled Cross Entropy loss function, named Cross-
NT-Xent. Inspired by [12], we apply our loss function to
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the latent space projected from the feature space, rather than
directly on the obtained feature space. To be specific, we
design a predictor head q(·) to map local features l generated
by intermediate layers of the encoder to latent spaces c. After
that, we apply the introduced Cross-NT-Xent to measure the
similarity between c from one branch and z from the other
branch. For instance, the input of model is a mini-batch of N
examples, and the output from two branches of the model for
an example is zi, zj , ci and cj , the Cross-NT-Xent can be
expressed as:

L2(cj , zi) = −
∑
l

log
exp(clj

T
zi/τ)∑N

k=1 exp(c
l
k

T
zi/τ)

L2(ci, zj) = −
∑
l

log
exp(cli

T
zj/τ)∑N

k=1 exp(c
l
k

T
zj/τ)

,

(9)

where l indicates l-th intermediate layer of the encoder. In
our paper, the encoder involves two layers, so l ∈ [1, 2].
This loss function enforces local embedding to be closer to
the global representation of the same object than any other
object, improving the effectiveness of learned representations,
as demonstrated by the following experiments.

Algorithm 2: ShapeContrast’s main algorithm
Input: Point Cloud X , Batch size N, Epoch E
Output: Network parameters of encoder f(·),

predictor head h(·) and predictor head q(·)
1 for e = 1:E do
2 Sampled a mini-batch {xk}Nk=1 ;
3 Generate adversarial examples {xk 1}Nk=1 and

{xk 2}Nk=1 according to Algorithm 1;

4 Obtain local features
{
{ll k 1}Nk=1

}2

l=1
and{

{ll k 2}Nk=1

}2

l=1
;

5 Obtain global representation {gk 1}Nk=1 and
{gk 2}Nk=1 ;

6 Calculate transformed latent space {zk 1}Nk=1 and

{zk 2}Nk=1,
{
{cl k 1}Nk=1

}2

l=1
and{

{cl k 2}Nk=1

}2

l=1
according to Eq. 7 ;

7 Calculate L1 and L2 according to Eq. 8 and Eq. 9;
8 Optimize the network by minimizing L1 and L2

9 end

IV. EXPERIMENTS

A. Experimental Datasets

Three benchmark datasets, including ModelNet [43],
ScanObjectNN [44] and ScanNet [45], are selected for evaluat-
ing the performance of representation learned by our proposed
model. The ModelNet40/10 dataset consists of 9832/3991
training shapes and 2468/908 testing shapes from 40/10
object classes. ScanObjectNN and ScanNet are both real-
world datasets that are used for cross-data evaluation. The
former comprises 2902 3D objects from 15 categories and we

employ the “object-only” partition in our experiments. And
the latter contains 9305/2606 training/testing object instances
including 17 categories collected from the original ScanNet
in accordance with [3]. In all experiments, 1024 points are
randomly sampled from each 3D object for model training
and evaluation. Note that no other information, such as nor-
mal information, is involved in our network. Moreover, all
experimental results are reported using single-view instead of
multi-view voting strategy, which is employed in some work
to better demonstrate the performance of the proposed model.

B. Implementation Details

Adversarial attack. We adopt projected gradient descent
(PGD) [42] to attack a pre-trained FoldingNet [6] model. The
step size for each attack iteration is 0.002, and the number of
iterations is 20. We restrict the final perturbation to 0.01, and
the coordinates of adversarial examples to the range of -1 to 1.

Network architecture. In our experiments, a light-weight
PointNet++ model is used as the basic encoder of our model
for feature learning, which involves two single-scale grouping
set abstraction layers. We sample 512 and 128 points in
each layer with a ball radius of 0.23 and 0.32, respectively.
For each predictor head, a two-layer MLP only with a
ReLU function applied to the hidden layer is employed to
map the representation to a 512-dimensional latent vector.
To evaluate the effectiveness of learned representation on
down-streaming classification task, the most commonly
used metric in previous work is the linear separability of
the classification task. In line with this, we train a linear
SVM [46] on the representation obtained from the training set
and then measure the classification accuracy on the testing set.
We implement the linear SVM classifier on scikit-learn library.

Network optimization. We employ the ADAM optimizer at
a base learning rate of 0.001, which decays with a rate of 0.7
every 20 epochs. And Batch Normalization layers [47] have
a momentum of 0.9 decaying with 0.5 every 20 epochs. Our
model is trained for 300 epochs with a batch size of 48 on a
single Tesla V100 GPU.

C. Object Classification

Results on ModelNet40 and ModelNet10 datasets. To
demonstrate the effectiveness of learned representation by our
proposed method, we first compare our models with state-of-
the-art point cloud representation learning methods, includ-
ing supervised learning and unsupervised learning. And for
unsupervised learning methods, we also select representative
voxel-based methods and multi-views-based methods, except
for popular point-based methods. Recent work [10] indicates
that increasing channel width can improve accuracy with lower
speed costs. So we report the performance of our model
using the basic model (1x channel width) and the larger
model (5x channel width). Table I displays the results of
our model and the comparison models on the ModelNet40
and ModelNet10 dataset. While existing supervised learning
methods [48], [49], [50], [51], [52] have produced superior
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results, it is important to note that our approach is aimed at
learning representations in an unsupervised manner and trains
on point clouds consisting of only 1000 points.To make a fair
comparison, we have not listed these methods in Table I. It can
be found from Table I that our method achieves new state-of-
the-art accuracy with 93.3% and 95.6% for ModelNet40 and
ModelNet10 datasets, respectively.

Fig. 5. Visualization of unsupervisedly learned representations by ShapeCon-
trast on the test set of ModelNet40 using t-SNE. We randomly select 10
categories from the original 40 categories to show results more clearly.

Three points should be noted here: 1) our model is trained
on the ModelNet40 dataset, while some models (marked as
†) like LGAN, FoldingNet and Shape Self-Correction are
obtained on the larger ShapeNet [43] dataset; 2) we input
1024 original 3D points without any other information, while
some models (marked as ‡) like PointGLR either input the
normal information or use it as a constraint for the decoder;
3) it can be found that our model achieves a comparable or
superior accuracy compared with the supervised model with
the same input of 1k points. In short, our model only needs to
be trained with a small number of points on a smaller dataset,
but achieves the state-of-the-art performance for unsupervised
classification. In particular, we adopt a lighter PointNet++ as
the encoder of our model, which achieves a better classification
performance than the original PointNet++ [2] model trained
in the supervised manner.

Moreover, we visualize the learned representations on
the testing set of ModelNet40 by using t-SNE. To show
the learned features more clearly, we randomly select ten
categories from the original forty categories, and display
their visualization results in Fig. 5. We find that the learned
representations of the same category are roughly clustered
together.

Transferability Validation on ScanObjectNN and ScanNet

TABLE I
CLASSIFICATION ACCURACY (%) ON MODELNET40 (MN40.) AND

MODELNET10 (MN10.) DATASETS. † INDICATES THE MODEL IS TRAINED
ON SHAPENET DATASET. ‡ INDICATES THE MODEL INVOLVES NORMAL

INFORMATION. * DENOTES THE MODEL WITH MULTIPLE CHANNEL WIDTH.

Method #Points Supervised Accuracy
MN40 MN10

TL Network [53] - ✗ 74.4 -
3DGAN [54] - ✗ 83.3 91.0
VSL [55] - ✗ 84.5 91.0
VIPGAN [56] - ✗ 92.0 94.1
PointNet[1] 1k ✓ 89.2 -
PointNet++[2] 1k ✓ 90.5 -
SO-Net[57] 1k ✓ 92.5 -
PointCNN[3] 1k ✓ 92.5 -
DGCNN[25] 1k ✓ 92.5 -
RSCNN[20] 1k ✓ 92.9 -
LGAN†[28] 2k ✗ 85.7 95.3
LGAN [28] 2k ✗ 87.3 92.2
FoldingNet†[6] 2k ✗ 88.4 94.4
FoldingNet [6] 2k ✗ 84.4 91.9
PointCapsNet [8] 2k ✗ 88.9 -
MAP-VAE[58] 1k ✗ 90.2 94.8
GraphTER[59] 1k ✗ 92.0 -
PointGLR‡[10] 1k ✗ 92.2 94.8
PointGLR*‡[10] 1k ✗ 93.0 95.5
Shape Self-Correction†[60] 1k ✗ 92.4 95.0
CP-Net[61] 1k ✗ 92.5 -
ConClu[62] 2k ✗ 92.4 95.3
ShapeContrast 1k ✗ 92.7 95.1
ShapeContrast* 1k ✗ 93.3 95.6

datasets. As demonstrated in the last section, our model
outperforms other models in terms of learned representation
when trained and tested on the same dataset. In this section,
we further present the transferability of learned represen-
tation on different datasets. Experimental datasets include
ScanObjectNN [44] and ScanNet [45], which contain different
categories of 3D object shape from the ModelNet dataset.
PointNet++ model with 5x channel width is employed as our
encoder and trained on ModelNet40 dataset. The representa-
tion of 3D shape from the targeted dataset are directly ex-
tracted by the trained model without fine-tuning. To evaluate
the quality of learned representations, we train a linear SVM
classifier on unsupervised representations of target training
data, and present the classification results in Table II.

TABLE II
CLASSIFICATION ACCURACY (%) ON ON SCANOBJECTNN (SON.) AND
SCANNET (SN.) DATASETS. † INDICATES THE MODEL IS TRAINED ON

SHAPENET DATASET. * DENOTES THE MODEL WITH MULTIPLE CHANNEL
WIDTH. # DENOTES REPRODUCED RESULTS.

Method Supervised Accuracy
SON. SN.

PointNet [1] ✓ 79.2 -
SpiderCNN [63] ✓ 79.5 -
PointNet++[2] ✓ 84.3 -
PointCNN [3] ✓ 85.5 -
DGCNN [25] ✓ 86.2 -
PointGLR* [10] ✗ 87.2 89.2
#PointGLR* [10] ✗ 86.2 89.2
Shape Self-Correction†[60] ✗ - 89.0
ShapeContrast* ✗ 86.9 90.4

As can be seen in Table II, the learned representations
by unsupervised learning methods have better generalization
ability compared to supervised learning methods, which can be
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TABLE III
COMPARISON WITH THE STATE-OF-THE-ART METHODS FOR FEW-SHOT CLASSIFICATION ON MODELNET40 DATASET. THE AVERAGE ACCURACY (%)
AND THE STANDARD DEVIATION ARE REPORTED OVER 10 INDEPENDENT EXPERIMENTS. ’*’ DENOTES THE REPRODUCE RESULTS UNDER THE SAME

DATA FOR A FAIR COMPARISON.

Methods Supervised 5-way 10-way
10-shot 20-shot 10-shot 20-shot

3D-GAN [54] ✗ 55.8 ± 10.7 65.8 ± 9.9 40.3 ± 6.5 48.4 ± 5.6
Latent-GAN [28] ✗ 41.6 ± 16.9 46.2 ± 19.7 32.9 ± 9.2 25.5 ± 9.9
PointCapsNet [8] ✗ 42.3 ± 17.4 53.0 ± 18.7 38.0 ± 14.3 27.2 ± 14.9
FoldingNet [6] ✗ 33.4 ± 13.1 35.8 ± 18.2 18.6 ± 6.5 15.4 ± 6.8
PointNet++ [2] ✓ 38.5 ± 16.0 42.4 ± 14.2 23.1 ± 7.0 18.8 ± 5.4
PointCNN [3] ✓ 65.4 ± 8.9 68.6 ± 7.0 46.6 ± 4.8 50.0 ± 7.2
PointNet [1] ✓ 52.0 ± 12.2 57.8 ± 15.5 46.6 ± 13.5 35.2 ± 15.3
DGCNN [25] ✓ 31.6 ± 9.0 40.8 ± 14.6 19.9 ± 6.5 16.9 ± 4.8
PointNet-Rand [64] ✗ 52.0 ± 3.8 57.8 ± 4.9 46.6 ± 4.3 35.2 ± 4.8
PointNet-OcCo [64] ✗ 89.7 ± 1.9 92.4 ± 1.6 83.9 ± 1.8 89.7 ± 1.5
DGCNN-Rand [64] ✗ 31.6 ± 2.8 40.8 ± 4.6 19.9 ± 2.1 16.9 ± 1.5
DGCNN-OcCo [64] ✗ 90.6 ± 2.8 92.5 ± 1.9 82.9 ± 1.3 86.5 ± 2.2
*DGCNN-rand [64] ✗ 91.8 ± 3.7 93.4 ± 3.2 86.3 ± 6.2 90.9 ± 5.1
*DGCNN-OcCo [64] ✗ 91.9 ± 3.3 93.9 ± 3.1 86.4 ± 5.4 91.3 ± 4.6
*Transformer-Rand [65] ✗ 87.8 ± 5.2 93.3 ± 4.3 84.6 ± 5.5 89.4 ± 6.3
*Transformer-OcCo [65] ✗ 94.0 ± 3.6 95.9 ± 2.3 89.4 ± 5.1 92.4 ± 4.6
*Point-BERT [65] ✗ 94.6 ± 3.1 96.3 ± 2.7 91.0 ± 5.4 92.7 ± 5.1
Ours ✗ 95.0 ± 3.5 96.5 ± 2.5 91.2 ± 4.4 93.0 ± 5.4

Train ModelNet40

chair bed monitor sofa table

Test

ScanObjectNN

chair bed display sofa table

ScanNet

chair bed tv sofa table

Fig. 6. Visualization of randomly selected examples from train dataset
(ModelNet40) and test dataset (ScanObjectNN and ScanNet).

attributed to the fact that supervised learning models heavily
rely on labeled data. Moreover, by comparing our ShapeCon-
trast model with the state-of-the-art method PointGLR [10],
we find that our model achieves superior performance on the
ScanNet dataset. But for the ScanObjectNN dataset, our model
has comparable classification accuracy to that reported in the
PointGLR paper and outperforms the accuracy reproduced by
using the official code of PointGLR. These results indicate
the satisfying transferability of learned representations to other
unseen datasets.

Furthermore, we show some examples from the Model-
Net40, ScanObjectNN, and ScanNet datasets in Fig. 6. As can
be seen, the point clouds of synthetic training examples are
clean and complete, while those of real-scanned test examples
are partial and incomplete due to occlusions. However, our
method still performs well on these test datasets, which
demonstrates that we learned the generic representation of 3D
objects from data structures instead of labels.

D. Few-Shot Learning

In addition, we test our proposed model by conducting
experiments in a few-shot learning (FSL) setting. Specifically,
we train our model on a support set with K classes and N
samples for each class, and then evaluate the trained model on
a query set with 20 unseen samples from each class. Following
previous work [65], we set K to 5 and 10, and N to 10
and 20, respectively. Therefore, we conduct 10 independent
experiments under four settings, i.e. “5-way 10-shot”, “5-
way 20-shot”, “10-way 10-shot” and “10-way 20-shot”. The
classification results, including average accuracy and standard
deviation, are reported in Table III. It can be found from
Table III that our proposed model achieves new state-of-the-art
accuracy in all few-shot settings, which further demonstrates
the pleasing transferability of our model to new tasks, even
with limited training data.

E. Shape Retrieval

We also implement 3D shape retrieval on ModelNet40 to
further evaluate the performance of learned representation.
Given a query 3D shape from the testing set, a ranked
list of the remaining 3D shape in the testing set will be
returned according to the similarity of the shapes. We adopt
the L2 distance between each pair of samples as the similarity
measure, which is consistent with [66]. We report the mean
average precision (MAP) of retrieval results in Table IV. From
Table IV, it can be seen that our model outperforms other
state-of-the-art methods. To intuitively show the performance
of shape retrieval, we list the retrieval results in Fig. 7 by
taking some randomly selected queries as input. We can see
from Fig. 7 that most of 3D shapes are correctly retrieved
by the proposed model. Although there are a few 3D shapes
retrieved incorrectly, it can be seen from Fig. 7 that they
are highly geometrically similar to the query shape, such
as stool vs. chair, vase vs. lamp and wardrobe vs. piano.
Thereby, this further demonstrates that our model effectively
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TABLE IV
COMPARISON WITH THE STATE-OF-THE-ART METHODS FOR 3D SHAPE

RETRIEVAL ON MODELNET40 DATASET.

Method Data Representation mAP
SPH [67] Mesh 33.3
LFD [68] Voxels 40.9
3DShapeNet [66] Voxels 49.2
Deeppano [69] Image 76.8
MVCNN [70] Image 80.2
MeshNet [71] Mesh 81.9
GIFT [72] Image 81.9
SPNet [73] Image 85.2
RED [74] Volume 86.3
Panorama-ENN [75] Image 86.3
DLAN [76] Points 85.0
TCL [77] Image 88.0
SequenceView [78] Image 89.1
VNN [79] Image 89.3
Densepoint [80] Points 88.5
PVNet [81] Points and Image 89.5
Ours Points 89.9

learned geometric structure information of the object shape,
even without the input of labels.

V. DISCUSSION

A. Ablation Study

In this section, we conduct detailed ablation studies to eval-
uate the effectiveness of our model designs, including tests on
the number of adversarial points, methods for selecting points,
different loss functions, and selection of hyper-parameters.

1) Number of Adversarial Points: As introduced before,
some critical points contribute more to the global features
of the point cloud during model learning and thus should
receive more attention. To identify these points, we conduct
an adversarial attack on a pre-trained FoldingNet [6] model
for generating an adversarial point cloud. Then we obtain
adversarial points by selecting the N points with the greatest
distance between the adversarial point cloud and the origi-
nal point cloud. The adversarial examples are generated by
merging the augmented views of adversarial points with other
non-adversarial points, and then input to the proposed model to
learn the representation. In this section, to explore the effect of
the number of adversarial points N , we conduct experiments
by setting N to 64, 128, 256, 512, and 1024, respectively.

Table V lists the classification accuracy of our model with
an altered number of adversarial points for augmentation.It
can be found that an appropriate number of adversarial points
is beneficial to improving the model performance to some
extent. Too few adversarial points will lead to insufficient
variability between the two augmented examples, while
augmenting all the points (i.e. N=1024) will introduce some
irrelevant information and distract the model. Therefore, it is
reasonable and effective to augment some important parts of
examples, which can also be applied to other domain tasks.

2) Methods for Selecting Points: To validate the effec-
tiveness of adversarial point selection, we compare it with
two other methods: taking all points as input and randomly

TABLE V
PERFORMANCE COMPARISON WITH THE DIFFERENT NUMBER OF

ADVERSARIAL POINTS SELECTION ON MODELNET40 TEST SET USING
POINTNET++ MODEL WITH SINGLE-CHANNEL WIDTH.

Number of Adversarial Points Accuracy
64 92.3

128 92.4
256 92.7
512 92.6

1024 92.4

selecting points as adversarial points. The results of these
methods on the ModelNet40 datasets are shown in TableVI.
It can be observed that adversarial point selection performs
better than the other two methods, improving the accuracy by
1.3% and 1.4%, respectively.

TABLE VI
COMPARISON OF DIFFERENT METHODS FOR SELECTING POINTS. N/A

STANDS FOR TAKING ALL POINTS AS INPUT, RANDOM STANDS FOR
SELECTING POINTS RANDOMLY, AND ADVERSARIAL STANDS FOR

SELECTING POINTS BY ADVERSARIAL MECHANISM.

Methods for Selecting Points Accuracy
N/A 91.4

Random 91.3
Adversarial 92.7

3) Effect of Different Loss Function: The NT-Xent loss
function is introduced by SimCLR[12] to maximize agreement
between augmented views of the same example in the latent
space. Inspired by this, we first design an additional predictor
head to transform the intermediate feature embeddings to
another latent space, and then design a Cross-NT-Xent loss
function based on the original NT-Xent to maximize agreement
on the cross-layer latent spaces. Related details can be found
in Section III-D. To evaluate the effectiveness of different loss
functions, we implement an ablation experiment to compare
three models: Model A trained with NT-Xent loss, Model B
trained with Cross-NT-Xent loss, and Model C trained with
both NT-Xent and Cross-NT-Xent losses.

As shown in Table VII, the classification accuracy of Model
A and Model B are both inferior to that of Model C. By
comparing Model A and Model C, and Model B and Model
C, we can find that involving either of these two losses can
help improve model accuracy, while our proposed Cross-NT-
Xent loss function contributes more than the original NT-Xent
loss function. By combining these two loss functions, our
model enables the differently adversarial examples to be more
similar to each other in the latent space, thus obtaining a more
effective global representation.

TABLE VII
PERFORMANCE COMPARISON WITH THE DIFFERENT LOSS FUNCTIONS ON

MODELNET40 TEST SET USING POINTNET++ MODEL WITH
SINGLE-CHANNEL WIDTH.

Model LNT−Xent LCross−NT−Xent Accuracy
A ✓ ✗ 91.8
B ✗ ✓ 92.3
C ✓ ✓ 92.7
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Fig. 7. Examples of 3D shape retrieval on ModelNet40 dataset. The first column denotes the query model and the rest columns are the corresponding top-10
retrieval results. The correct retrieval models are boxed in green , while the incorrect ones are boxed in red.

4) Selection of hyper-parameters: During the training pro-
cess of our model, we have tested different hyper-parameter
settings. In this section, we mainly discuss the settings of two
major hyper-parameters on the ModelNet40 dataset: learning
rate and batch size. We evaluate the learning rate of our
model at 0.1, 0.01, 0.001, and 0.0001, and found that the
highest classification accuracy is obtained with a learning rate
of 0.001, as demonstrated in Table 2. Additionally, we explore
the effect of batch size on the model’s performance, with
values of 24, 36, 48 and 60. The results, presented in Table
3, indicate that our model exhibits the highest classification
accuracy when the batch size is set to 48.

TABLE VIII
THE EFFECT OF OUR MODEL

ACCURACY AT DIFFERENT
LEARNING RATES.

Learning rate Accuracy
0.1 91.2

0.01 92.3
0.001 92.7

0.0001 92.2

TABLE IX
THE EFFECT OF OUR MODEL

ACCURACY AT DIFFERENT BATCH
SIZE.

Batch size Accuracy
24 92.0
36 92.3
48 92.7
60 92.5

B. Robustness Analysis

To test the robustness of learned representation, we evaluate
the classification accuracy of our model with varying numbers
of input points and training samples.

1) Number of Input Points: We first test the robustness of
our model on the ModelNet40 dataset with sparser points of
1024, 512, 256, 128, and 64. Note that our model was trained
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with 1024 points without random input dropout. In this experi-
ment, we utilize the PointNet++ model with 5x channel width
as the encoder of our model. And we choose PointNet[1],
PointNet++[2] with 5x channel width, and DGCNN[25] as
baseline methods.

As shown in Fig. 8, recognizing shapes becomes more
difficult as the number of points decreases. However, our
model is more robust in learning representation of point cloud
than other models. The accuracy of the compared methods
decreases rapidly as the number of the point cloud gradually
decreases. In particular, when the number of input points is
set to 64, the accuracy of the other compared models on
ModelNet40 is lower than 20%, while the accuracy of our
proposed model is higher than 60%.

Fig. 8. Top part: Point cloud with random point dropout. Bottom part: The
robustness test of our model on different number of input points compared to
some supervised models on ModelNet40 test set. * denotes the model with
multiple channel width.

TABLE X
THE ROBUSTNESS TEST OF OUR MODEL ON DIFFERENT NUMBER OF

TRAINING SAMPLES COMPARED TO SUPERVISED POINTNET++ MODEL
(WITH 5X CHANNEL WIDTH) ON MODELNET40 TEST SET. |∆|

REPRESENTS THE ABSOLUTE VALUE OF THE ACCURACY DIFFERENCE.

Training Samples PointNet++ Ours |∆|
100% 92.1 93.3 1.2
50% 89.4 91.5 2.1
25% 87.4 91.2 3.8
10% 83.6 91.0 7.4
1% 74.5 89.6 15.1

2) Number of Training Samples: Moreover, we evaluate
the robustness of learned representations of our model when
trained with the different number of training samples. The
randomly sampled 100%, 50%, 25%, 10% and 1% data from
ModelNet40 training sets are individually input into training

models, while the linear SVM classifier is still trained on the
whole learned representations. As described in the last section,
the PointNet++ model with 5x channel width is selected as one
of the baseline models and the encoder in this work. It can be
seen from Table X that the classification performance of our
model is highly robust to decreases in the amount of training
data. Particularly, the classification accuracy is kept at nearly
90% even when the model is trained with only 1% data, an
improvement of more than 15% when compared with the same
model trained in a supervised learning manner.

C. Extensibility of Segmentation Tasks

In this section, we verify the extensibility of the proposed
model for segmentation tasks. To make a fair comparison, we
follow the experimental setup of PointConstrast and pre-train
our model on a larger dataset, ScanNet. We evaluate the seg-
mentation accuracy of our model on two popular segmentation
tasks, shape part segmentation and scene segmentation.

1) Part Segmentation: We evaluate the effectiveness of our
learned representation on the ShapeNet Part [82] dataset for
the 3D shape part segmentation.The dataset consists of 16,681
objects from 16 categories, each of which is labeled with 2 to
6 part labels. We compare several baseline models, including
SO-Net [57], PointCapsNet [8], Multitask Unsupervised [83],
and PointConstrast [11], and report the mean IoU across all
categories of these models in Table XI. Table XI presents the
results of these models when fine-tuning the pre-trained model
using 1%, 5%, and 100% of the training data, respectively. It
can be observed that our model achieves superior segmenta-
tion accuracy compared to these models. This indicates that
our pre-trained model can easily be extended to the object
segmentation task with a small amount of data fine-tuning.

TABLE XI
RESULTS OF PART SEGMENTATION ON THE SHAPENET PART DATASET

Methods IoU(1% data) IoU(5% data) IoU(100% data)
SO-Net [57] 64.0 69.0 -
PointCapsNet [8] 67.0 70.0 -
Multitask [83] 68.2 77.7 -
PointConstrast [11] 74.0 79.9 85.1
Ours 75.6 81.2 86.3

2) Scene Segmentation: In addition, the effectiveness of
our pre-trained model is further evaluated on the S3DIS
[84] dataset for 3D scene segmentation. The S3DIS dataset
contains the point cloud of 271 rooms in 6 areas, which
have been manually annotated into 13 classes. We evaluate
our model on Area 5, while the point cloud from the other
areas is used for fine-tuning our pre-trained model. To ensure
a fair comparison with PointContrast, we selected the Sparse
Residual U-Net, i.e. MinkowskiNet34, as the backbone for
learning representations, following the same setting used in
the PointContrast. As shown in Table XII, we compare our
results with other models and find that our model still achieves
superior segmentation accuracy compared to the others. Espe-
cially compared with PointConstrast, our model improves 0.8
and 1.1 in both accuracy and precision metrics, respectively.
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This superiority in performance is a demonstration to the
extensibility and generalizability of our model, which can be
applied to a wide range of segmentation tasks with confidence.

TABLE XII
RESULTS OF SCENE SEGMENTATION ON THE S3DIS DATASET AREA5

Methods mIoU mAcc
PointNet [1] 41.1 49.0
PointCNN [3] 57.3 63.9
MinkowskiNet32 [85] 65.4 71.7
PointConstrast [11] 70.9 77.0
Ours 71.7 78.1

VI. CONCLUSION

In this work, we present a simple and universal framework
for unsupervised representation learning of 3D shapes. We
first introduce an innovative paradigm for adversarial example
generation that merges augmented views of critical points,
identified through the adversarial attack mechanism, with
non-critical points. The adversarial examples are then input
into the contrastive learning neural network to extract local
embeddings and global representations. To improve the quality
of the learned representations, we not only use the NT-Xent
loss to enforce the similarity of the global representations but
also propose a novel Cross-NT-Xent loss function to enforce
the similarity between the local structure and the global
shape. Extensive experimental results on three downstream
tasks, including classification, few-shot learning, and shape
retrieval, have demonstrated the effectiveness, robustness, and
transferability of learned representations by the proposed
ShapeContrast model. Furthermore, we extend our model
to segmentation tasks, demonstrating the extensibility and
generalization of the proposed model.
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