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UDFStudio: A Unified Framework of Datasets,
Benchmarks and Generative Models for Unsigned

Distance Functions
Junsheng Zhou∗, Weiqi Zhang∗, Baorui Ma, Kanle Shi, Yu-Shen Liu, Zhizhong Han

Fig. 1: Diverse shapes with and without open surfaces generated by our UDiFF model. Top-Left: Conditional generation of
clothes with prompts ‘A short-sleeved dress in spiderman style’, ‘A Batman upper with long sleeves’, ‘A superman pant’, ‘A
camouflage slip dress’. Around: A shape gallery generated by UDiFF conditionally and unconditionally.

Abstract—Unsigned distance functions (UDFs) have emerged
as powerful representation for modeling and reconstructing
geometries with open surfaces. However, the development of
3D generative models for UDFs remains largely unexplored,
limiting current methods from generating diverse open-surface
3D content. Moreover, mainstream 3D datasets predominantly
consist of watertight meshes, revealing a critical challenge: the
absence of standardized datasets and benchmarks specifically
tailored for open-surface generation and reconstruction. In this
paper, we begin by introducing UDiFF, a novel diffusion-based 3D
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generative model specifically designed for UDFs. UDiFF supports
both conditional and unconditional generation of textured 3D
shapes with open surfaces. At its core, UDiFF generates UDFs
in the spatial-frequency domain using a learnable wavelet trans-
form. Instead of relying on manually selected wavelet transforms,
which are labor-intensive and prone to information loss, we
introduce a data-driven approach that learns the optimal wavelet
transformation from UDFs datasets. Beyond UDiFF, we present
the UWings dataset, comprising 1,509 high-quality 3D open-
surface models of winged creatures. Using UWings, we establish
comprehensive benchmarks for evaluating both generative and
reconstruction methods based on UDFs.

Index Terms—Unsigned distance field, generative modeling,
dataset, benchmark, diffusion model.

I. INTRODUCTION

PROBABILISTIC diffusion models [1], [2] have largely
revolutionized 2D content generation. Recent advance-

ments, such as DALL-E 2 [3] and Stable Diffusion [4],
have been widely used in text-to-image generation, image
inpainting, etc. A series of stuides [5], [6] try to replicate
these success in 3D content generation by developing diffusion
models for point clouds or voxels, but fail to produce high
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Fig. 2: The illustration of UWings dataset and the benchmarks under UWings dataset.

fidelity results due to the limited resolution in voxels and
the discreteness of points. Recent approaches [7]–[9] explore
diffusion models to generate 3D shapes represented by neural
implicit functions, e.g. signed distance function (SDF) [10],
[11] and occupancy function (Occ) [12]. However, these
methods are constrained to generating closed shapes, as both
SDF and Occ rely on modeling the internal and external
relationships of 3D locations to represent 3D shape. This
makes previous 3D implicit diffusion models not capable of
generating diverse 3D real world contents with open surfaces.

Another challenge in diffusion-based 3D generative models
is how to define an appropriate compression transform scheme
for achieving compact implicit representations which can be

learned by diffusion models efficiently. Some approaches
train a variational auto-encoder (VAE) [13] for converting
shapes into triplane [14], [15] or single latents [16] for latent
diffusion. However, the relatively limited 3D data makes
it difficult to train a stable VAE. Instead, another series
of approaches (e.g. WaveGen [7]) seek to leverage explicit
transform (e.g. wavelet transform [17]) for direct compression.
Nevertheless, they need to select an appropriate wavelet type,
which often requires extensive manual efforts and can still
result in significant information loss during the inverse wavelet
transformation.

To address these issues, we propose UDiFF, a 3D diffusion
model for unsigned distance fields (UDFs) [18], [19] which
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is capable of generating textured 3D shapes with open sur-
faces. Compared to commonly-used SDF or Occ, UDF has
proven to be an advanced representation that supports arbitrary
typologies and remains strong generalization. Going beyond
unconditioned models, we can also incorporate conditions
achieved from CLIP [20] models into UDiFF by introducing
conditional cross-attentions. This enables us to control 3D
generation using the text and image signals. Previous studies
merely focus on generating geometries which lead to a lack
of appearance and prevent them from creating diverse and
visual-appealing 3D models. In contrast, we get inspiration
from Text2Tex [21] to simultaneously generate textures for
universal 3D content creation.

Directly applying existing SDF-based diffusion models to
UDF does not work well. The difficulty arises from the
significantly greater complexity of UDF than SDF, particularly
in the context of the non-differential zero-level set. To solve
this issue, we introduce UDiFF, a diffusion model in the
spatial-frequency domain via an optimal wavelet transfor-
mation, which produces a compact representation space for
UDF generation. Instead of engaging in selecting a suitable
wavelet transformation, which is tedious and often results in
significant information loss, we employ a data-driven approach
to obtain an optimal wavelet filter for representing UDFs.
We minimize the unsigned distance errors during a self-
reconstruction through the wavelet transformation, especially
near the zero-level set of UDFs. This preserves the geometry
details during wavelet transformation, which leads to the high-
fidelity generation of 3D geometries.

Our method is initially reported in CVPR 2024 [22]. In this
paper, we extend our CVPR work by collecting a large-scale
dataset for UDFs, performing more comprehensive evaluations
and benchmarking methods for implicit generation and recon-
struction with UDFs under the new dataset.

Previous approaches that learn signed distance fields or
occupancy for 3D reconstruction and generation are limited
to modeling closed topologies, with evaluations conducted
on datasets of closed shapes such as ShapeNet [23], DTU
[24], ABO [25] and Thingi10K [26]. With recent advances
in UDF-based methods for reconstructing and generating 3D
shapes with arbitrary topologies, there is an urgent need for
a large 3D dataset of open-surface shapes to evaluate their
performance. In this paper, we propose the UWings dataset,
a high-quality 3D dataset containing 1,509 shapes with open
surfaces. Specifically, UWings is a diverse dataset of crea-
tures with wings featuring complex open-surface geometries
and thin structures. The dataset is curated from the large
Objaverse-XL dataset [27] through both automated and manual
filtering. The diversity of the UWings dataset is highlighted
in two key aspects: (1) Diverse categories. UWings includes
10 categories of creatures with wings such as bees, butterflies,
dragonflies, beetles, mosquitoes, flies, grasshoppers, ladybugs,
crickets, and moths. (2) Diverse motions. The 3D models in
UWings dataset feature various motions, such as different wing
angles and postures.

To facilitate the development of 3D generation, reconstruc-
tion and perception with unsigned distance fields, we further
establish comprehensive benchmarks based on the UWings

dataset, including: (1) 3D shape generation, (2) surface recon-
struction from multi-view images, and (3) surface reconstruc-
tion from point clouds. We will release all textured meshes,
multi-view renderings, and sampled point clouds as part of our
dataset. We believe that the new UWings benchmarks provide
a large-scale, unbiased platform for comparing both existing
and future methods.

We evaluate our proposed method UDiFF for generating 3D
shapes with both open and closed surfaces, either conditionally
or unconditionally, on the DeepFashion3D [28], ShapeNet [23]
and UWings datasets. The experimental results demonstrate
that UDiFF achieves promising generation performance com-
pared to the existing state-of-the-art approaches, in both quali-
tative and quantitative evaluations. Our main contributions can
be summarized as follows.

• We propose UDiFF, a 3D diffusion model for unsigned
distance fields which is capable of generating real world
textured 3D shapes with open surfaces unconditionally or
from text conditions.

• We introduce an optimal wavelet transformation for
UDFs through data-driven optimization, and justify that
the spatial-frequency domain learned through this trans-
formation is a compact domain suitable for UDF gener-
ation.

• We introduce the UWings dataset, a high-quality 3D
dataset containing 1,509 shapes with complex open-
surface geometries and thin structures. UWings includes
diverse categories of winged creatures, capturing a range
of forms and motions.

• On the proposed UWings dataset, we establish compre-
hensive benchmarks, including: (1) 3D shape generation,
(2) surface reconstruction from multi-view images, and
(3) surface reconstruction from point clouds.

• We evaluate UDiFF for generating 3D shapes with both
open and closed surfaces, and show our superiority over
the state-of-the-art methods.

II. RELATED WORK

With the rapid development of deep learning, the neural
networks have shown great potential in 3D applications [29]–
[42]. We mainly focus on learning generative Neural Implicit
Functions with networks for generating 3D shapes.

A. Neural Implicit Representations

Recently, Neural Implicit Functions (NIFs) have shown
promising results in surface reconstruction [10], [12], [43],
novel view synthesis [44], [45], image super-resolution [46],
[47], etc. The NIFs approaches train a neural network to
represent shapes and scenes with signed distance functions
(SDFs) [10], [48], [49] or binary occupancy [12], [50], where
the marching cubes algorithm [51] is then used to extract
surfaces from the learned NIFs. OccNet and DeepSDF [10],
[12] are the pioneers of NIFs which learn global latent
codes for representing 3D shapes with MLP-based decoder
to achieve occupancies or signed distances. The subsequent
approaches [50], [52] leverage more latent codes to represent
detailed local geometries. PCP [53] and OnSurf [54] introduce
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predictive context priors and on-surface prior to enhance the
representation ability of NIFs.

Occupancy and SDFs are mainly suitable to represent closed
shapes. Recent studies explore the neural unsigned distances
(UDFs) [18], [19], [55]–[59] to represent shapes and scenes
with open surfaces. NDF [18] designs a hierarchical neural
network to learn UDFs with ground truth distance supervi-
sions. GIFS [60] learns UDFs and represents shapes with
query relationships. CAP-UDF [19] and LevelSetUDF [59]
develop consistency-aware constraints and level set projections
to stabilize the optimization of UDFs and produce more
accurate geometries.

B. Diffusion-based 3D Generative Models

Generating 3D contents plays the key role in aug-
mented/virtual reality and has been widely explored in the past
few years. Earlier studies transfer the success of GAN [61],
VAE [13] and the flow-based model [62] in image generation
to the 3D domain for generating 3D shapes represented as
point clouds [63]–[67] and voxels [6], [68]. For example,
PointDiff [5] introduces the powerful diffusion models for
point cloud generation. Some advanced methods [69], [70]
combining the voxel with point representations were proposed
for more robust 3D generation with diffusion models.

More recently, some approaches [7], [14], [71]–[73] try to
combine the diffusion models with neural implicit representa-
tions for generating high-quality 3D shapes. These methods
generate signed distance fields [7], [8], [15], [72], [74] or
occupancy fields [9] with diffusion models and extract the
meshes from the fields with the marching cubes [51]. For the
efficient training of diffusion models, methods like Diffusion-
SDF [8] and 3D-LDM [16] train a VAE for converting shapes
into latent codes for latent diffusion. But the relative small
number of 3D samples for training makes it difficult to train a
stable VAE. WaveGen [7] was proposed to explicitly compress
SDFs in frequency domain with wavelet transform, but it is
limited to the information loss during the wavelet recovery.

The advances in NIFs-based 3D generative models have
shown significant improvements in the generation qualities,
however, they are limited to generate closed surfaces. This
prevents them from generating diverse 3D contents in real
world. In this work, we focus on generating UDFs for open
surfaces with textures using a 3D diffusion model.

C. 3D Datasets and Benchmarks for Implicit Functions

Collecting large-scale 3D datasets is both costly and chal-
lenging. To train and evaluate the representations of im-
plicit functions, researchers usually leverage the existing 3D
datasets collected for 3D analysis. For 3D generation tasks,
commonly used datasets include ShapeNet [23], ABO [25]
and 3D-FUTURE [75]. For the task of surface reconstruc-
tion from multi-view images and point clouds, widely-used
datasets include DTU [24], FAMOUS [76], Thingi10K [26]
and OmniObject3D [77]. However, these datasets are limited
to closed shapes, making them inadequate for evaluating the
performance of implicit functions in modeling shapes with
arbitrary typologies.

Recent advances in unsigned distance functions (UDFs)
have demonstrated their promising capability in generating and
reconstructing open surfaces with arbitrary topologies. Current
studies conduct benchmarks on DeepFashion3D [28], a 3D
garment dataset containing 563 instances of open garments.
However, the DeepFashion3D dataset is of relatively low
quality and lacks diversity. The DeepFashion3D dataset is
collected using scanning sensors, inevitably producing self-
occlusions and invisible regions. Additionally, the garment
geometries often lack detail and do not present significant
challenges for learning to model. Therefore, there is an urgent
need to develop a diverse and large-scale 3D dataset of open-
surface shapes with high-quality geometric details, which is
used to properly evaluate UDF-based methods. To achieve
this purpose, we collect and develop the UWings dataset for
evaluating UDF methods, as will be introduced in detail below.

III. THE UWINGS DATASET

A. Data Collection, Filtering and Processing

Data Collection. We collect shapes for UWings dataset from
the large Objaverse [78] and Objaverse-XL [27] datasets.
Objaverse-XL is the largest available 3D asset dataset, com-
piled from diverse internet sources such as GitHub, Sketchfab,
Thingiverse and Polycam. We aim to collect a high-quality
set of winged creature models from Objaverse-XL dataset to
create a dedicated dataset for open-surface shapes. However,
the Objaverse-XL dataset is highly noisy, containing lots of
low-quality models which significantly affect the performance
of training generative models. To this end, we choose to collect
data for UWings dataset from the Objaverse dataset and the
curated subset of Objaverse-XL dataset. Since Objaverse-XL
dataset involves all the models in the Objaverse dataset, we
will refer the used data source as Objaverse-XL.
Data Filtering. To collect shapes with wings from the
Objaverse-XL dataset, we first utilized the Cap3D [79] dataset
and its extended version, i.e. DiffuBank [80], to automatically
filter insect models with thin wings. Cap3D captions over 1
million 3D models in the Objaverse-XL dataset by leveraging
BLIP2 [81] to generate captions for renderings, where GPT-4
Vision [82] is used for refining the final captions. Specifically,
we filtered out the target shapes from Objaverse-XL by query-
ing relevant text prompts from the Cap3D captions. We set
the query prompts to 10 insect categories with thin wings,
including bees, butterflies, dragonflies, beetles, mosquitoes,
flies, grasshoppers, ladybugs, crickets and moths. The models
that do not contain these category-specific texts in their Cap3D
captions were excluded, and the remaining models were col-
lected as the automatically filtered set.

Manual filtering is also necessary for improving the quality
of our dataset, since the Objaverse-XL dataset is highly
noisy, which contains a significant proportion of corrupted
or mismatched models, even within the curated subset. We
manually reviewed all the 3D models in the automatically
filtered set and removed defective or mismatched models. To
enhance the diversity of motion patterns, we also captured
frames from animated objects to include 3D models in various
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Fig. 3: Overview of UDiFF. (a) We propose a data-driven approach to attain the optimal wavelet transformation for UDF
generation. We optimize wavelet filter parameters through the decomposition and inversion by minimizing errors in UDF
self-reconstruction. (b) We fix the learned decomposition wavelet parameters and leverage it to prepare the data as a compact
representation of UDFs including pairs of coarse and fine coefficient volumes. (c) is the architecture of the generator in diffusion
models, where text conditions are introduced with cross-attentions. (d) The diffusion process of UDiFF. We train the generator
to produce coarse coefficient volumes from random noises guided by input texts and train the fine predictor to predict fine
coefficient volumes from the coarse ones. Follow the green arrows for inference, we start from a random noise and an input
text condition to leverage the trained generator to produce a coarse coefficient volume. The trained fine predictor then predicts
the fine coefficient volume. Together with the coarse one, we recover the UDFs with the fixed pre-optimized inversion wavelet
filter parameters. Finally, we extract surfaces from UDFs and further texture them with the guiding text.

motions and poses. In total, we obtained 1,509 clean, high-
quality 3D models of winged creatures from the 4,073 models
in the automatically filtered set.
Data Processing. We begin by normalizing all models to
fit within a unit sphere before sampling 3D/2D data for
downstream tasks. These normalized objects are ready to use
in training 3D generative models. For surface reconstruction
from point clouds, we uniformly sample 10,000 points from
each model to create a pair consisting of a point cloud and its
corresponding ground truth mesh. For multi-view reconstruc-
tion, we render 93 views with uniformly distributed camera
poses around each model.

B. Benchmarking UWings

We conduct comprehensive benchmarks on the developed
UWings dataset to evaluate the performance of various un-
signed distance field-based methods on 3D generation and
reconstruction. Here, we mainly focus on three tasks: (1) 3D
shape generation, (2) surface reconstruction from multi-view
images, and (3) surface reconstruction from point clouds. In
Sec.VI, we report the benchmarks and evaluations on the state-
of-the-art methods.

IV. THE UDIFF MODEL

Overview. The overview of UDiFF is shown in Fig. 3. UDiFF
is a 3D generative model which takes texts as conditions
and generates general textured 3D shapes with either open
or closed surfaces. We will start by introducing the novel
approach to obtain an optimal wavelet transform for a com-
pact UDF representation and the data preparation process for
training diffusion models in Sec. IV-A. We then present the
designed conditional diffusion framework for UDF generation
and the generator network in Sec. IV-B. Finally, we extract
surfaces from the generated UDF and further add textures on
the mesh with the guiding text in Sec. IV-C.

A. Optimal Wavelet Transformation for UDFs

One main challenge in diffusion-based 3D generative mod-
els is to search for a compact representation space for diffusion
model to learn efficiently. WaveGen [7] adopts an explicit
wavelet transform on the SDF volumes (2563) to decompose
them into coarse coefficient volumes and fine coefficient
volumes with much lower resolutions. The naive wavelet
transform leads to large information loss since the manually
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extracted from the recovered UDF with manual chosen wavelet
filters.

selected wavelet is not capable of representing various shapes
as accurate distance functions.

To represent UDFs in a compact way, we follow WaveGen
to adopt multi-scale wavelet transform [17], [83] as the com-
pressing schema, keeping only the coefficients at a relative
small scale of J = 3 for efficient shape learning. However,
the UDF is significantly more complex and unstable than
SDF, particularly in the area of non-differential zero-level sets,
where the geometry details that the wavelet compressing does
not preserve will severely affect the generation of UDFs. Thus,
a suitable wavelet filter with much less information loss but
remains compact and efficient for UDFs is vital.

To this end, instead of manually searching for the ap-
propriate wavelet filter which demands costly efforts and is
still hard to reduce the information loss, we propose a data-
driven approach to learn the optimal wavelet filter parameters
for UDFs through learning-based optimization as shown in
Fig. 3(a). Specifically, we define a learnable biorthogonal
wavelet filter which consists of a decomposition filter ϕD

θ and
an inversion filter ϕI

δ with learnable filter parameters θ and
δ. Given a set of shapes {Si}Ni=1, we first sample the UDF
volume Ui for each shape at a resolution of 2563 and truncate
the distance values in Ui to [0, 0.1], and then compress it into
a coarse coefficient volume and a fine coefficient volume with
the learnable decomposition filter ϕD

θ as:

{Ci, Fi} = ϕD
θ (Ui). (1)

We then predict the lossy UDF Û from Ci and Fi with the
learnable inversion filter ϕI

δ as:

{Ûi} = ϕI
δ(Ci, Fi). (2)

The target is to optimize the filter parameters θ and δ by
minimizing the information loss during wavelet decomposition

and inversion, formulated as:

min
θ,δ

N∑
i=1

LMSE(w
γ
i Ûi, w

γ
i Ui), (3)

where wγ
i is the weights for enforcing the optimization to

focus on the space near the zero-level set of UDF. wγ
i has the

same size as Ui for weighting each grid in the UDF volume,
where we define wγ

i according to a threshold γ to mask the
grids with distances larger than γ.

After data-driven optimization of the wavelet filters ϕD
θ and

ϕI
δ , we learn the optimal wavelet transform with much less

information loss and can faithfully reconstruct the original
UDF while remains compact. We show the comparison on
the wavelet filters in Fig. 4, where the surfaces reconstructed
from UDF with our learned wavelet filter in Fig. 4(b) are
much smoother and more accurate than the reconstructions
with common filters like Biorthogonal wavelet 3-3 in Fig. 4
(d). Specifically, Biorthogonal wavelet 6-8 in Fig. 4 (c) is the
carefully chosen filter by WaveGen from a series of wavelet
filters, where our learned filter significantly outperforms the
manually selected filters in compressing and recovering UDF.
The reason is that the filters learned by data-driven optimizing
from UDF datasets are much more suitable to specific char-
acters of UDFs, which preserves more geometry details.

With the learned optimal wavelet filter, we then leverage
it to represent UDFs as a compact representation for training
diffusion models. As shown in Fig. 3 (b), we fix the param-
eters for ϕD

θ and produce the paired coarse efficient {Ci}Mi=1

volumes and fine efficient volumes {Fi}Mi=1 by decomposing
Ui with Eq. (1).

B. Conditional UDF Diffusion

Generator Architecture. We first introduce the network de-
tails of diffusion generators for 3D volumes, as shown in
Fig. 3(c). The generator shares a similar U-Net architecture
as Stable-Diffusion [4], [84], where the 2D convolutions are
replaced with 3D ones for handling 3D volumes. Each U-Net
operation in Fig. 3(c) contains 3×3×3 residual blocks, pooling
layers and down/up-sampling layers. For introducing text
conditions to diffusion models, we first encode the input texts
with frozen CLIP [20] models to produce text embeddings and
then fuse them into the volume features with cross-attention
layers.
Learning Diffusion Models. We develop our 3D generative
model UDiFF based on diffusion probabilistic models [1],
[2]. The diffusion process is to generate coarse coefficient
volumes which represents the general geometry of 3D shapes
from random volume noises, as shown in Fig. 3 (d). We
define {C0, C1, ..., CT } as the forward process q(C0:T ) which
gradually transforms a real data C0 into Gaussian noise (CT )
by adding noises, where C0 is a sample from the coarse
coefficient data {Ci}Mi=1. The diffusion backward process
pσ(C0:T ) leverages the generator with parameter σ to denoise
CT into a real data sample. The learning schema is to train the
generator to maximize the generation probability of the target,
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i.e. pσ(C0). We follow DDPM [2] to simplify the optimization
target to predict noises ϵσ with the generator, formulated as:

min
σ

EC0,t,ϵ∼N (0,1)

[
∥ϵ− ϵσ (Ct, t)∥2

]
, (4)

where t is a time step and ϵ is a noise volume sampled from
the unit Gaussian distribution N .
Condition-Guided 3D Diffusion. Up to this point, we have
covered the generative diffusion process without conditions.
For a controllable generation of unsigned distance fields,
we further introduce a conditioning mechanism [4] into the
diffusion process by cross-attention. Specifically, given an
input text y, we first leverage a frozen CLIP text encoder
τ to project y into the condition embedding τ(y). The em-
bedding is then fused into the U-Net layers of generator with
cross attention modules implemented as Attention(Q,K, V ) =

softmax
(

QKT

√
d

)
·V , where Q = W

(i)
Q ·φi(Ct), K = W

(i)
K ·τ(y)

and V = W
(i)
V · τ(y). Here, φi(Ct) is the output of an

intermediate layer of the U-Net and W
(i)
V , W (i)

Q & W
(i)
K are

learnable matrices.
The cross-attention mechanism learns a mapping from the

input text condition to the coefficient volumes which represent
the geometric generations. The optimizing target in Eq. (4) is
then modified as:

min
σ

EC0,y,t,ϵ∼N (0,1)

[
∥ϵ− ϵσ (Ct, τ(y), t)∥2

]
. (5)

Fine Predictor. The last module for learning to generate
UDFs is the fine predictor f which predicts fine coefficient
volumes from the generated coarse ones. We follow WaveGen
[7] to implement f with the similar U-Net architecture as the
generator. We train f with pairs of coarse and fine coefficient
volumes {Ci, Fi} with MSE loss to minimize the differences
between Fi and the prediction f(Ci).

C. Generating Novel 3D Shapes

Generating UDFs at Inference. With the learned optimal
wavelet filters and the trained conditional diffusion models,
we can now generate novel 3D shapes as shown in the green
arrows in Fig. 3. Starting from a random volume noise and an
input text y, we leverage the generator to produce a coarse
coefficient C ′ volume by removing noises iteratively with
the guidance of y. The fine predictor then predicts the fine
coefficient volume F ′, together with C ′ to generate the UDF
U ′ by the wavelet inversion with the learned filter ϕI

δ as
Eq. (2).
Surface Extraction and Texturing. After generating a novel
UDF U ′, we extract the zero-level set of U ′ as a surface. The
recent works [19], [85] leverage the gradients at UDF as the
signals to mesh UDFs, however, the approximated gradients of
generated UDF may not be stable enough at the zero-level set,
which leads to errors and holes. We therefore adopt DCUDF
[86] with double covering to mesh the generated UDF of
UDiFF. Finally, to create visual-appealing 3D models, we drew
inspiration from Text2Tex [21]. This helps to generate textures
for the extracted mesh while leveraging the text guidance
within a progressive rendering-based texturing framework.

TABLE I: Quantitative comparison of generated shapes on
DeepFashion3D dataset. MMD-CD scores and MMD-EMD
scores are scaled by 103 and 102, respectively.

Method COV ↑ MMD ↓ 1-NNA ↓
CD EMD CD EMD CD EMD

PointDiff [5] 68.67 64.56 11.01 15.53 83.21 87.69
WaveGen [7] 62.34 51.89 15.56 17.03 92.93 94.83

Diffusion-SDF [8] 67.09 62.03 14.79 16.63 88.98 92.63
LAS-Diffusion [87] 67.40 56.01 14.59 16.53 88.61 91.41

Ours 69.62 67.72 11.60 14.01 81.83 82.14

Fig. 5: Visual comparison of generated shapes with state-of-
the-arts trained under DeepFashion3D dataset. The front and
back faces are rendered in different colors for a visualization
of open surfaces.

V. EXPERIMENT ON UDIFF
In this section, we evaluate our proposed UDiFF in shape

generation. We first demonstrate the performance of UDiFF
in generating novel shapes with open surfaces in Sec. V-A.
Next, we conduct experiments on generating shape with closed
surfaces in Sec. V-B. The ablation studies are shown in Sec.
V-C. The implementation details are reported in Sec. V-D.

A. Open-Surface Shape Generation

Dataset. For evaluations in generating shapes with open
surfaces, we conduct experiments on DeepFashion3D dataset
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Fig. 6: Conditional generations produced by UDiFF and
Shap·E. The front and back faces are rendered in different
colors for a clear visualization of open surfaces.

[28]. The DeepFashin3D dataset is a real-captured 3D dataset
of open-surface clothes, containing 1,798 models reconstructed
from real garments. It covers 10 categories and 563 garment
instances. The dataset is randomly split into training and
testing sets by the ratio 80% and 20 %. To get the text
conditions for training UDiFF, we first render each model
from the front facing view to obtain the image representing
the model. We then leverage BLIP2 [81] for captioning the
images and keep the caption description of the rendered image
for each model as the text condition for the model. We further
mix the category description of each model provided in the
dataset into the text condition as a supplementary.
Metrics. For a fair comparison with various methods, we
conduct the quantitative evaluations on the unconditional
shape generation. We randomly generate 1,000 shapes with
the trained model and uniformly sample 2,048 points on
each generated shape. We follow previous works [5], [7]
to evaluate the generation quality using Minimum matching
distance (MMD), Coverage (COV) and 1-NN classifier accu-
racy (1-NNA). MMD measures the geometry accuracy of the
generated shapes. COV indicates the ability of the generated
shapes to cover the shapes in the test set. 1-NNA is designed
to measure how well a classifier differentiates the generated
shapes from the given shapes in the testing set. Lower is better
for MMD, higher is better for COV and the closer to 50 %
the better for 1-NNA.
Baselines. We compare UDiFF with the state-of-the-art meth-
ods in terms of the shape generation quality. The meth-
ods includes PointDiff [5], WaveGen [7], Diffusion-SDF [8]
and LAS-Diffusion [87]. PointDiff uses point cloud data

(a) Geometry Only (b) With Texture

Fig. 7: Image conditioned generation with UDiFF. (a) Open-
surface geometries generated with image guidance. (b) An
example of generating textured shapes with image guidance.

for training, where we sample 2,048 points on each model
and leverage the official code for training. All the previous
implicit-based shape generation methods represent shapes as
SDF or Occ, where the watertight meshes are required to
generate the SDF/Occ data for training. Therefore, we leverage
the commonly-used manifold method [88] for preprocessing
the open-surfaces in DeepFashion3D. After that, we follow
the official codes of these methods for training unconditional
models with the watertight meshes.
Comparison. The quantitative comparison is shown in Tab.
I. where UDiFF achieves the best performance compared to
the previous state-of-the-art methods. The main reason is that
all the previous implicit-based methods fail to handle the
open-surfaces, where the needed manifold preprocessing leads
to large bias on the original open-surface shapes. While the
proposed UDiFF represents shapes as unsigned distance fields
and is able to handle general shapes with or without open
surfaces, leading to superior performance compared to other
methods.

The visual comparison is shown in Fig. 5, where the
proposed UDiFF significantly outperforms the previous works
in generating visual-appealing clothes with open surfaces. We
render the inside and outside surfaces in different colors for
a clear difference on open surfaces. The PointDiff generates
the point cloud to represente shapes, which do not require the
manifold preprocess. However, it struggles to produce high-
fidelity generations due to the discreteness of points.
Text-conditional Generation. For evaluations in generation
with conditions, we further train a conditional model and
generate shapes with the guidance from provided text prompts.
We visually compare the generations with those produced by
Shap·E under the same texts as shown in Fig. 6. The results
demonstrate that UDiFF generates more accurate and high-
fidelity predictions from the texts. UDiFF also produces more
realistic textures thanks to the powerful Text2Tex [21]. On the
contrary, Shap·E struggles to generate correct geometries and
textures.
Image-conditional Generation. We further justify that UDiFF
can receive diverse signals except texts (e.g. images) for
conditional generation. This is achieved by leveraging the pre-
aligned text and image representations of the CLIP model,
where we adopt the frozen CLIP image encoder to achieve
the image embeddings to guide UDiFF generation by cross-
attention, without requiring extra training on images. We show
the image-conditional generations of UDiFF in Fig. 7. The
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TABLE II: Quantitative comparison of generated shapes on ShapeNet dataset. MMD-CD scores and MMD-EMD scores
are scaled by 103 and 102, respectively.

Method
Chair Airplane

COV ↑ MMD ↓ 1-NNA ↓ COV ↑ MMD ↓ 1-NNA ↓
CD EMD CD EMD CD EMD CD EMD CD EMD CD EMD

IM-GAN [89] 56.49 54.50 11.79 14.52 61.98 63.45 61.55 62.79 3.320 8.371 76.21 76.08
Voxel-GAN [90] 43.95 39.45 15.18 17.32 80.27 81.16 38.44 39.18 5.937 11.69 93.14 92.77

PointDiff [5] 51.47 55.97 12.79 16.12 61.76 63.72 60.19 62.30 3.543 9.519 74.60 72.31
SPAGHETTI [91] 49.48 50.22 14.7 15.85 72.34 69.46 56.86 58.83 4.260 8.930 79.36 78.86

SALAD (Global) [74] 49.71 48.75 11.71 14.12 62.72 61.25 54.88 59.33 3.877 8.958 82.20 80.35
SALAD [74] 56.42 55.16 11.69 14.29 57.82 58.41 63.16 65.39 3.636 8.238 73.92 71.08
WaveGen [7] 49.63 50.15 12.12 14.25 65.04 62.87 60.94 59.09 3.528 7.964 75.77 72.93

Ours 52.58 55.99 11.67 14.04 65.96 63.42 64.77 63.78 3.151 7.798 74.48 78.99

IM-GAN SPAGHETTI WaveGen Ours

Fig. 8: Visual comparison of the generated shapes with state-
of-the-arts on ShapeNet dataset.

textures on the right of Fig. 7 is achieved with Text2Tex [21]
on the text prompt predicted from the image with BLIP2 [81],
i.e., ‘A white floral shirt with a long sleeves’ .

Category-conditional Generation. We provide more shape
generations obtained by the UDiFF model trained on Deep-
Fashion3D [28] dataset with the cloth categories as the con-
ditions. Specifically, we generate 8 categories of cloth shapes,
including “long sleeve dress”, “long sleeve upper”, “pants”,
“no sleeve dress”, “no sleeve upper”, “dress”, “shot sleeve
dress” and “shot sleeve upper”. The visualizations are shown
in Fig. 14, where UDiFF generates diverse and novel shapes
correctly corresponds to the text conditions.

B. Closed Shape Generation

Dataset and metrics. For the closed shape generation, we
follow the common setting of previous methods [7], [74] to
conduct generation experiments under the airplane and chair
classes of the ShapeNet [23] dataset. We randomly generate
2,000 shapes with the trained model and uniformly sample
2,048 points on each generated shape. We follow previous
works [5], [7] to evaluate the generation quality using MMD,
COV and 1-NNA. We compare our method with all the
baselines using their officially provided pretrained models and
codes.
Comparison. We compare UDiFF with the state-of-the-art
methods including IM-GAN [89], Voxel-GAN [90], PointDiff
[5], SPAGHETTI [91], WaveGen [7] and SALAD [74]. We
show the quantitative comparison in Tab. II, where the results
are directly borrowed from WaveGen and SALAD for a fair
comparison.

The comparison demonstrates UDiFF also has the capabil-
ity to generate high-fidelity watertight geometries with only
closed surfaces. We justify that UDiFF is a general shape gen-
erator to produce general shapes with either open surfaces or
closed surfaces. We achieve the comparable performance with
the state-of-the-art method SALAD [74], and also significantly
outperform the baseline WaveGen [7] which also leverages
wavelet transformation as the compact representation. The
reason is that our proposed approach for learning optimal
wavelet filter largely reduces the information loss during
transformation, which leads to more accurate and diverse
generations. We further show the visual comparison of some
generated shapes of different methods in Fig. 8. We can see
that the shapes generated by our method are more faithful
than IM-GAN and SPAGHETTI by producing finer details
and cleaner surfaces, and have less bumpy geometries than
WaveGen thanks to the optimal wavelet filter to significantly
reduce information loss.
Conditional Generation. We further train a text-conditional
model under the ‘Chair’ category of the ShapeNet dataset.
We visually compare the generations produced by AutoSDF
[92] and our propose UDiFF with the same text conditions as
shown in Fig. 9. The results demonstrate that UDiFF generates
more accurate and high-fidelity predictions from the texts
compared to AutoSDF.
More Visualizations. We further provide more unconditional
shape generation results achieved by the UDiFF model trained
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Fig. 9: Text-conditioned generation with UDiFF and AutoSDF
on ShapeNet dataset.

Fig. 10: Mesh extraction comparisons between MeshUDF and
DCUDF.

TABLE III: Ablation studies on the framework design.
MMD-CD scores and MMD-EMD scores are scaled by 103

and 102.

Method COV ↑ MMD ↓ 1-NNA ↓
CD EMD CD EMD CD EMD

W/o learned wavelet 64.52 65.02 13.24 15.26 85.06 86.22
W/o fine predictor 66.36 65.18 12.37 14.48 83.62 84.17

Full 69.62 67.72 11.60 14.01 81.83 82.14

under single categories of ShapeNet [23] dataset. We generate
shapes of the “chair” and “airpane” categories. The visual-
izations are shown in Fig. 15, where UDiFF generates visual-
appealing shapes.

C. Ablation Studies

Framework Design. To evaluate the major components in our
methods, we conduct ablation studies under the DeepFash-
ion3D dataset [28] and report the performance in Tab. III.
We first justify the effectiveness of the proposed optimal
wavelet transformation by replacing our learned wavelet filter
with the previous carefully chosen wavelet filter by WaveGen
[7], i.e., Biorthogonal 6-8. The result is shown as ‘W/o
learned wavelet’. We then remove the fine predictor of UDiFF
to recover the 3D shapes with only the generated coarse
coefficients as shown in ‘W/o fine predictor’. The ablation
study results demonstrate that effect of designs in UDiFF by
significantly improving the generation performance.

TABLE IV: Ablation studies on the effect of wavelet
optimization. We report the L2 Chamfer Distance scaled by
105.

Method Haar Biorthogonal3-3 Biorthogonal6-8

CD 264.8 46.04 42.92

Method Learnable ϕD
θ Learnable ϕI

δ Both

CD 36.12 32.15 28.51

The Effect of Wavelet Optimization. We further evaluate
the effect of our proposed wavelet optimization to achieve
optimal wavelet filter. The result is shown in Tab. IV, where we
conduct evaluations under the test set of DeepFashion3D [28]
and report the L2 Chamfer Distance between the ground truth
meshes and the recovered meshes with wavelet filters Haar,
Biorthogonal3-3, Biorthogonal6-8 and ours. We show the per-
formance of only optimizing decomposition filter parameters
ϕD
θ with fixed inversion filter parameters ϕI

δ as ‘Learnable
ϕD
θ ’, and only optimizingϕI

δ with fixed ϕD
θ as ‘Learnable ϕI

δ’.
The best performance is achieved with optimizing both ϕI

δ and
ϕD
θ as ‘Both’.

The Meshing Approach. We further conduct ablation studies
on the meshing approaches for extracting geometries from the
generated UDFs. We show the visual comparison of meshing
the generated UDFs with MeshUDF [85] and DCUDF [86] in
Fig. 10.

D. Implementation Details

Meshing. Different from SDFs, UDFs fail to extract surfaces
by the marching cubes [51] since UDFs cannot perform
inside/outside tests on 3D grids. Recent works [19], [85]
leverage the gradients at UDF grids as the signals to mesh
UDFs. However, for the generated UDFs, the approximated
gradients may not be stable enough at the zero-level set,
which results in errors and holes. The approximated gradient
at a grid point q is defined as the direction from q to the
neighbour grid qn where the UDF from q to qn increases
rapidly the most. We adopt DCUDF [86] with double covering
to mesh the generated UDF of UDiFF, which results in more
continuous surfaces. We make an adaption to DCUDF on
the double covering operation to replace the time-consuming
optimizations with an explicit vertices refinement strategy. We
move each vertices against the surface normals with a stride
of unsigned distances to reach the zero-level sets, and then
leverage the min-cut algorithm to achieve the final model.
Texturing. We leverage Text2Tex [21] to generate textures
for the extracted meshes. This is achieved with a progressive
texture generation process and a texture refinement process.
Specifically, we first render the texture-less initial mesh from
the preset viewpoint and generate the appearance according
to the text prompt with the depth-guided stable-diffusion [4].
We then adjust to the next preset viewpoint and repeat the
appearance generation process until the last preset viewpoint
where the whole mesh is textured. Finally, we optimize the
textures with automatically selected viewpoints for refinement.
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Diffusion-SDFPointDiff WaveGen LAS-Diffusion UDiFFSurf-D UDiFF (with Texture)

Fig. 11: Visual comparisons of 3D shape generations under the UWings dataset.

TABLE V: Quantitative comparison of generated shapes on
UWings dataset. MMD-CD scores and MMD-EMD scores
are scaled by 103 and 102, respectively.

Method COV ↑ MMD ↓ 1-NNA ↓
CD EMD CD EMD CD EMD

PointDiff [5] 71.56 70.21 23.82 16.75 78.97 82.67
WaveGen [7] 64.10 63.00 30.83 19.40 83.51 87.44

Diffusion-SDF [8] 69.60 67.77 27.16 17.54 81.93 83.66
LAS-Diffusion [87] 66.30 67.40 27.88 17.88 80.99 86.33

Surf-D [93] 71.20 72.89 22.67 16.87 77.66 83.51

UDiff 74.35 75.45 16.63 13.78 73.53 80.67

VI. BENCHMARKS ON UWINGS

A. 3D Shape Generation

Data Settings and Metrics. We conduct experiments under
the UWings dataset for evaluating the 3D generation quality
and diversity. For a comparison among various methods, we
report the quantitative performance in unconditional shape
generation. We randomly generate 1,000 shapes with the
trained models and uniformly sample 2,048 points on each
generated shape. We adopt the same settings as experiments
in Sec.V-A to evaluate the generation quality using Minimum
matching distance (MMD), Coverage (COV) and 1-NN clas-
sifier accuracy (1-NNA).
Baselines. Using shapes with open surfaces in the UWings
dataset, we evaluate the generation performance of the state-
of-the-art methods, including PointDiff [5], WaveGen [7],
Diffusion-SDF [8], LAS-Diffusion [87], Surf-D [93], and
UDiFF [22]. PointDiff is a point cloud-based 3D generation
method, where we sample 2,048 points from each model and
use the official code for training. For the state-of-the-art SDF-

based 3D generation methods (e.g. WaveGen, Diffusion-SDF
and LAS-Diffusion), we follow the same setup as experiments
in Sec.V-A by first preprocessing the open surfaces in the
UWings dataset using manifold methods, and then generating
SDF data for training.

UDiFF is the first method to explore UDF-based 3D
generation for creating open surfaces. For a comprehensive
comparison of UDF-based 3D generation methods, we also
include Surf-D, a recently released 3D generative model for
UDF. Both UDiFF and Surf-D [93] can be directly trained on
shapes with open surfaces in the UWings dataset without the
need for manifold operations.
Comparisons. The quantitative comparison is shown in
Tab. V. UDiFF proposed in Sec. IV achieves the best per-
formance compared to all the state-of-the-art methods. The
previous SDF-based implicit generation methods fail to han-
dle open surfaces, resulting in errors and fat double-layer
typologies on the thin structures. UDiFF also significantly
outperforms the recent work Surf-D [93] which focuses on
the same task to generate unsigned distance fields. We also
present the visual comparison of the 3D generations in Fig. 11,
where UDiFF also achieves the best performance in generating
visual-appealing 3D shapes with open and thin structures. We
observe that LAS-Diffusion performs best in the SDF-based
methods by producing smooth surfaces, while the point-based
PointDiff struggles in generating clean shapes. Surf-D can
generate open surfaces but struggle in producing high-fidelity
details.

The benchmark conducted on the high-quality UWings
dataset for 3D generation of shapes with open surfaces sig-
nificantly contributes to the field of shape generation with
arbitrary typologies. The benchmark provides a fair and com-
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TABLE VI: Quantitative comparisons under the UWings dataset.

ScanID S0 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16 S17 Mean

NeuS [94] 4.35 3.95 4.23 3.30 3.11 6.68 4.88 2.60 3.92 5.34 4.75 4.55 3.66 4.34 4.48 4.37 4.82 5.96 4.41
Instant-NGP [45] 5.20 4.91 4.39 3.33 3.43 9.37 5.48 2.65 4.41 4.32 5.23 5.27 3.76 15.18 4.74 3.74 3.50 5.02 5.28

NeAT [95] 4.30 3.65 4.54 3.55 3.37 5.39 4.79 2.89 4.55 3.26 5.84 4.70 4.31 4.21 3.80 5.11 4.87 5.52 4.37
NeuralUDF [57] 2.51 3.46 4.56 2.62 3.41 2.48 4.15 1.68 2.13 2.11 3.86 3.50 2.28 4.98 4.97 3.91 4.76 3.80 3.40

NeUDF [58] 3.42 2.86 3.28 1.89 2.15 2.93 2.41 1.57 2.07 1.64 2.12 4.16 2.31 2.46 2.40 2.11 2.57 3.35 2.54

Instant-NGP NeuralUDFNeuS NeAT NeUDFReference Images

Fig. 12: Visual comparisons of surface reconstructions from multi-view images in UWings dataset.

prehensive comparison among the explicit and implicit-based
3D generation methods.

B. Surface Reconstruction from Multi-view Images

Neural surface reconstruction from multi-view images has
been shown to be powerful for recovering 3D surfaces via
image-based neural rendering. Most of the previous methods
focus on learning signed distance fields [94] or occupancy
fields [96] for modeling 3D geometries, but they are limited
to reconstructing closed shapes. A series of recent meth-
ods optimize unsigned distance fields which are capable of
modeling open structures. However, their performance under
open-surface shapes are only evaluated limitedly under some
simple garment models from DeepFashion3D [28] or MGN
[97] dataset.
Data Settings and Metrics. For a comprehensive comparison
among the implicit-based multi-view reconstruction methods
on reconstructing open-surface 3D shapes with complex de-
tails, we conduct a benchmark on the proposed UWings
dataset. We evaluate a wide range of baselines under 18
shapes from the UWings dataset. The shapes are chosen to
have complex geometries and contain diverse categories and
motions. We adopt the widely-used L1 Chamfer distance as the
metric to evaluate the errors of the randomly sampled points

on the reconstructed surfaces compare to the ones sampled on
the ground truth meshes.
Baselines. We evaluate the multi-view reconstruction perfor-
mance of the state-of-the-art methods, including NeuS [94],
Instant-NGP [45], NeAT [95], NeuralUDF [57] and NeUDF
[58]. NeuS and Instant-NGP are SDF-based and NeRF-based
approaches, which can not handle shapes with open surfaces
well. NeAT trains an SDF network with a validity probability
function to mask out the extra surfaces extracted, and finally
produces open surfaces. Neural-UDF and NeUDF are the
pioneers in learning unsigned distance fields from multi-view
images for open surface reconstruction.
Comparisons. Tab. 12 shows the quantitative comparison. The
UDF-based methods (i.e., NeuralUDF and NeUDF) signifi-
cantly outperform the NeuS and Instant-NGP. Visual compar-
isons are also provided in Fig. 12. The results demonstrate
that unsigned distance fields provide a convincing solution for
modeling open surfaces, and the UWings dataset provides a
comprehensive benchmark for the multi-view surface recon-
struction methods.

C. Surface Reconstruction from Point Clouds

Surface reconstruction from point clouds [11], [99], [101]
plays an important role in computer graphics. Similar to the
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Neural-Pull NDF GIFS GeoUDF CAP-UDF DUDF LevelSetUDF GTInput

Fig. 13: Visual comparisons of surface reconstructions from point clouds in the UWings dataset.

TABLE VII: Surface reconstruction evaluation using Chamfer
distances and F-scores. Chamfer-L1 and Chamfer-L2 values
are reported, along with F-Score at thresholds 0.005 and 0.01.

Chamfer-L1 Chamfer-L2 F-Score
Method Mean Median Mean Median F10.005 F10.01

NeuralPull [11] 2.229 0.885 41.798 3.242 62.44 68.85
NDF [18] 0.227 0.217 0.080 0.071 96.06 99.40
GIFS [60] 0.224 0.222 0.076 0.069 96.38 99.42
GeoUDF [98] 0.191 0.186 0.061 0.058 95.89 99.46
CAP-UDF [19], [99] 0.183 0.178 0.057 0.046 97.26 99.82
DUDF [100] 0.181 0.178 0.053 0.052 97.39 99.83
LevelSetUDF [59] 0.175 0.170 0.045 0.039 97.75 99.90

recent advances in 3D generation and multi-view reconstruc-
tion, the latest works learn unsigned distance fields [18], [19]
to model open surfaces instead of the signed distance fields
[10] and occupancy fields [12] adopt in previous methods.
Data Settings and Metrics. We aim to conduct a comprehen-
sive benchmark on the Uwings dataset for evaluating the per-
formance of existing approaches and for the subsequent works
to make a fair and convenient comparison on reconstructing
complex and open-surface geometries. We evaluate a wide
range of baselines under the full set of the UWings dataset. For
evaluating the performances, we follow the common setting
[19], [60] to sample 100K points from the reconstructed
surfaces and leverage Chamfer Distance, Normal Consistency
[12] and F-score with a threshold of 0.005 / 0.01 as the
evaluation metrics.
Baselines. We evaluate the state-of-the-art methods under the
task of surface reconstruction from point cloud, including
Neural-Pull [11], NDF [102], GIFS [60], CAP-UDF [19],
[99], GeoUDF [98], DUDF [100] and LevelSetUDF [59].
Neural-Pull is the SDF-based method and GIFS learns a query

relationship for modeling open surfaces. The rest methods
are UDF-based methods, which are capable of representing
arbitrary typologies.
Comparisons. We show the quantitative and qualitative com-
parison in Tab. 13 and Fig. 13. The SDF-based method
Neural-Pull struggles in reconstructing thin geometries with
open structures. The comprehensive comparisons among UDF-
based methods demonstrate that LevelSetUDF achieves the
best performance with high-quality and smooth reconstruc-
tions.

VII. CONCLUSION

In this work, we present UDiFF, a 3D diffusion model for
generating textured 3D shapes with open and closed surfaces,
either conditionally or unconditionally. We leverage a diffusion
model to learn distributions of UDFs in a spatial-frequency
space established through an optimal wavelet transforma-
tion for UDFs, which is learned by data-driven based self-
reconstruction. The evaluations on widely used benchmarks
show our superior performance over the latest methods in
generating shapes with either open and closed surfaces. Ad-
ditionally, we introduce the UWings dataset, which contains
1,509 high-quality 3D models of winged creatures which
contains open surfaces, for shape modeling with UDFs. We
establish comprehensive benchmarks on UWings dataset to
provide a large-scale unbiased platform for evaluating the
UDF-based methods.
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Fig. 14: Category conditional generations under DeepFashion3D dataset.
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